2930. 【NOIP2012模拟8.6】绕圈跑

29 篇文章 13 订阅
3 篇文章 0 订阅

Description

Farmer John决定调查开展“奶牛赛跑运动”的可能性。 

他将N头奶牛(1 <= N <= 100,000),放在一个长度为C的圆形跑道上。奶牛们沿圆形跑道,跑L圈。 

所有奶牛起点都相同,跑步的速度不同。 

当最快的奶牛跑完距离L*C的时候,比赛结束。 

FJ注意到,有些时候一头奶牛会超过另一个奶牛。 

他在思考,整个比赛中,这类“超车事件”会发生多少次。 

更具体的说,一个“超车事件”指的是: 

一对奶牛(x,y)和一个时间t(小于等于比赛结束时间),在时间t奶牛x超过前面的奶牛y。

请帮FJ计算整个比赛过程中,“超车事件”发生的次数。

 

 

Input

第1行:三个空格隔开的整数:N,L和C。(1 <= L,C <= 25,000)。 

第2..N+1行:第i+1行包含奶牛i的速度,一个整数,范围1..1,000,000。

 

Output

第1行:整个比赛过程中,“超车事件”发生的总次数。

 

Sample Input

4 2 100
20
100
70
1

Sample Output

4

Hint

【样例解释】

有4头奶牛,跑2圈,圆形跑道的长度为100。

奶牛们的速度分别是:20,100,70和1。

比赛持续2单位时间,奶牛2花费此时间完成比赛。

在这段时间里,发生了4次“超车事件”:奶牛2超过奶牛1和4,奶牛3超过奶牛1和4。

 

【数据范围】

有60%的数据满足N<=5000

Solution

首先我们将比赛时间求出来,即为T=l*c/max(s)。再算出每个牛在比赛时间内所跑的圈数,即为s[i]*T/c,化简一下,得:s[i]*l/max(s)。若要求奶牛i超过奶牛j多少次,即为奶牛i跑的圈数-奶牛j跑的圈数。所以我们要求的就是所有的\sum \left \lfloor q_i-q_j \right \rfloor(q_i>q_j )注意到有小数,且要求下取整,所以这个问题比较棘手。我们可以将一个小数拆成整数和小数两部分来看。我们将整数部分从大到小排一遍序,然后先算出整数部分的答案,但是可能会有多的,比如4.2-2.5我们算出4-2=2,但实际的答案是\left \lfloor 4.2-2.5 \right \rfloor=1,因为4.2的小数部分0.2大于2.5的小数部分0.5,所以我们要将答案-1。这就相当于对于小数部分,我们要将ans再减去序列中逆序对的个数,这样问题就得到了解决。

 

Code

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define N 100010
#define ll long long
#define db long double
using namespace std;
ll n,l,c,a[N],x=0,ans,b[N],d[N],e[N];
void nxd(int l,int r){
	if(l>=r) return;
	int mid=(l+r)>>1;
	nxd(l,mid);nxd(mid+1,r);
	int i=l,j=mid+1,k=l;
	while(i<=mid||j<=r){
		if(d[i]<=d[j]&&i<=mid||j>r) e[k++]=d[i++];
		else{
			ans-=(mid-i+1);
			e[k++]=d[j++];
		}
	}
	for(i=l;i<=r;i++) d[i]=e[i];
}
int main(){
	scanf("%lld%lld%lld",&n,&l,&c);
	for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
	sort(a+1,a+1+n);
	for(int i=1;i<=n;i++){
		b[i]=a[i]*l/a[n];
		d[i]=(a[i]*l)%a[n];
	}
	sort(b+1,b+1+n);
	for(int i=1;i<=n;i++){
		ans+=(ll)b[i]*(i-1)-x;
		x+=(ll)b[i];
	}
	nxd(1,n);
	printf("%lld\n",ans);
	return 0;
}


作者:zsjzliziyang 
QQ:1634151125 
转载及修改请注明 
本文地址:https://blog.csdn.net/zsjzliziyang/article/details/87393854

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值