Description
Farmer John决定调查开展“奶牛赛跑运动”的可能性。
他将N头奶牛(1 <= N <= 100,000),放在一个长度为C的圆形跑道上。奶牛们沿圆形跑道,跑L圈。
所有奶牛起点都相同,跑步的速度不同。
当最快的奶牛跑完距离L*C的时候,比赛结束。
FJ注意到,有些时候一头奶牛会超过另一个奶牛。
他在思考,整个比赛中,这类“超车事件”会发生多少次。
更具体的说,一个“超车事件”指的是:
一对奶牛(x,y)和一个时间t(小于等于比赛结束时间),在时间t奶牛x超过前面的奶牛y。
请帮FJ计算整个比赛过程中,“超车事件”发生的次数。
Input
第1行:三个空格隔开的整数:N,L和C。(1 <= L,C <= 25,000)。
第2..N+1行:第i+1行包含奶牛i的速度,一个整数,范围1..1,000,000。
Output
第1行:整个比赛过程中,“超车事件”发生的总次数。
Sample Input
4 2 100
20
100
70
1
Sample Output
4
Hint
【样例解释】
有4头奶牛,跑2圈,圆形跑道的长度为100。
奶牛们的速度分别是:20,100,70和1。
比赛持续2单位时间,奶牛2花费此时间完成比赛。
在这段时间里,发生了4次“超车事件”:奶牛2超过奶牛1和4,奶牛3超过奶牛1和4。
【数据范围】
有60%的数据满足N<=5000
Solution
首先我们将比赛时间求出来,即为T=l*c/max(s)。再算出每个牛在比赛时间内所跑的圈数,即为s[i]*T/c,化简一下,得:s[i]*l/max(s)。若要求奶牛i超过奶牛j多少次,即为奶牛i跑的圈数-奶牛j跑的圈数。所以我们要求的就是所有的注意到有小数,且要求下取整,所以这个问题比较棘手。我们可以将一个小数拆成整数和小数两部分来看。我们将整数部分从大到小排一遍序,然后先算出整数部分的答案,但是可能会有多的,比如4.2-2.5我们算出4-2=2,但实际的答案是,因为4.2的小数部分0.2大于2.5的小数部分0.5,所以我们要将答案-1。这就相当于对于小数部分,我们要将ans再减去序列中逆序对的个数,这样问题就得到了解决。
Code
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define N 100010
#define ll long long
#define db long double
using namespace std;
ll n,l,c,a[N],x=0,ans,b[N],d[N],e[N];
void nxd(int l,int r){
if(l>=r) return;
int mid=(l+r)>>1;
nxd(l,mid);nxd(mid+1,r);
int i=l,j=mid+1,k=l;
while(i<=mid||j<=r){
if(d[i]<=d[j]&&i<=mid||j>r) e[k++]=d[i++];
else{
ans-=(mid-i+1);
e[k++]=d[j++];
}
}
for(i=l;i<=r;i++) d[i]=e[i];
}
int main(){
scanf("%lld%lld%lld",&n,&l,&c);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
sort(a+1,a+1+n);
for(int i=1;i<=n;i++){
b[i]=a[i]*l/a[n];
d[i]=(a[i]*l)%a[n];
}
sort(b+1,b+1+n);
for(int i=1;i<=n;i++){
ans+=(ll)b[i]*(i-1)-x;
x+=(ll)b[i];
}
nxd(1,n);
printf("%lld\n",ans);
return 0;
}
作者:zsjzliziyang
QQ:1634151125
转载及修改请注明
本文地址:https://blog.csdn.net/zsjzliziyang/article/details/87393854