聚焦评价算法主要应用于基于图像处理的自动调焦技术、聚焦恢复形貌技术(Shape From Focus)。通过阅读多篇论文,对聚焦评价算法进行分类总结。聚焦评价算法可大致分为四大类:基于梯度边缘的评价算法(空域)、频域评价算法、基于信息熵的评价算法、基于图像统计学的评价算法。
一、基于梯度边缘的评价算法(空域)
通过计算图像的梯度信息来评价图像的清晰度。在正焦的清晰图像中具有丰富的边缘信息,梯度值大,在离焦的模糊图像中边缘信息模糊,梯度值小。该类方法的普遍优点是计算简单、容易实现,具有一定的鲁棒性;但在低对比度图像如在平坦和无纹理区域,图像灰度差分值小,其评价性能较差。
1.灰度差分绝对值之和函数(SMD)
通过对水平、垂直方向相邻像素间灰度差的绝对值进行求和,提出灰度差分绝对值之和函数对图像的清晰度进行评价。
2.能量梯度函数(EOG)
将x方向和y方向相邻像素灰度值之差的平方和作为每个像素点的梯度值,再对所有梯度值累加求和。
3.Roberts函数
将4个相邻像素点灰度值交叉相减的平方和作为每个像素点的梯度值,再对所有的梯度值累加求和。
4.Krish函数
将原图像邻域内8个方向的卷积核进行卷积,选取最大值作为清晰度评价依据。8个卷积核如下:
,
,
,
,
,
,
,
聚焦评价函数如下:
式中,......,max{.}为取最大值操作。
5.Tenengrad函数
通过Sobel算子提取图像水平和垂直方向上的梯度,计算像素点的梯度的平方和。其中和
分别是像素点水平方向和垂直方向上的Sobel梯度。
聚焦评价函数如下:
6.Brenner函数
通过计算相差两个单位的像素间梯度的平方,再进行累加求和运算。
7.拉普拉斯函数
通过采用拉普拉斯算子于各个像素点的灰度值进行卷积得到梯度矩阵,然后计算各像素点的梯度平方和。
其中
8.改进拉普拉斯函数(SML)
在Laplace算子基础上进行改进,计算x,y方向的二阶差分绝对值和的平方。
9.FSWM函数
频率选择中值滤波。
式中,
其中,med{.}是取中值操作。
二、频域评价算法
频域评价算法将图像从空域变换到频域,再对变换后的二维系数进行计算,得到频域变换后图像的清晰度评价函数。频域变换后的图像包括低频部分和高频部分,低频部分表示图像的概貌特征,高频部分表征图像的细节特征。聚焦清晰图像的高频分量比离焦模糊图像的丰富。该类方法灵敏度高,在低对比度图像中仍能得到优良的评价结果,鲁棒性强;但由于频域涉及复数计算,效率一般较低。
1.基于DCT变换(离散余弦变换)的算子
基于DCT变换(离散余弦变换)的算子:DCT是与傅里叶变换相关的一种变换,类似与离散傅里叶变换。使用DCT衡量清晰程度时往往会忽略掉局部高频分量,使得DCT在多数情况下不适用于求取整幅图像的特性,若使用DCT,需要进行算法上的改进。
式中C(u,v)表示余弦变换的系数矩阵。当u=v=0时,C(0,0)为图像的直流分量,随着u,v变化,C(u,v)表示相应频率分量的变化。
2.基于傅里叶变换的算子
式中表示的是像素到中心点像素的距离,P(u,v)表示的是图像频谱的平方。
三、基于信息熵的评价算法
信息熵描述了信息的丰富程度,体现了图像灰度分布的统计特性,当图像的清晰程度发生变化时,其像素的灰度值及区间分布也会随之变化。聚焦清晰图像中信息熵大,离焦模糊图像信息熵小。
其中表示的是灰度值为i的像素出现的次数在整幅图像中所占的比例。
四、基于图像统计学的评价算法
基于统计的聚焦评价方法依据图像灰度值的统计规律判断图像是否聚焦。该类方法在低对比度图像中灵敏度较低,抗噪性能较差。
1.方差函数
图像灰度分布的离散程度。正焦清晰图像灰度值变换范围大,方差大;离焦模糊图像灰度值变换范围小,方差小。
2.自相关函数
自相关函数表征的是点与点之间的相似性或相关性。清晰的图像边缘轮廓尖锐,细节纹理比较清晰,与相邻像素之间存在强烈的对比,图像中各像素点之间的相关性比较弱,模糊图像各像素点之间的相关性比较强。自相关函数定义如下:
自相关函数的清晰度函数表达式如下:
3.Range函数
Range函数使用灰度的变化来表征图像的质量,函数值越大,图像越清晰。Range函数基于灰度直方图中灰度带的变化来反映图像的清晰程度。
式中表示的是灰度级为k时对应的直方图的值。
4.Menmay函数
Menmay函数通过计算图像直方图中大于某一阈值T的所有直方图值的和作为清晰度评价函数。
5.Masgrn函数
Masgrn函数计算图像直方图中大于某一阈值T的所有像素灰度值与对应的直方图值的和作为清晰度评价函数。
阈值T定义为:
的取值为:
关于 影响聚焦评价算法鲁棒性的因素 及 评判聚焦评价算法的性能指标 可参考本账号下一篇博客内容 聚焦评价算法_2~~