1988 年 4 月 13 日,第七届全国人民代表大会第一次会议通过了关于设立海南省的决定和关于建立海南经济特区的决议。据《中国房地产市场年鉴(1996)》统计,1988 年,海南省商品住宅价格平均为 1350 元每平方米,1993 年达到 7500 元每平方米,之后几年商品住宅价格比较平稳略有小幅回落。2010 年国家发改委批复了《海南国际旅游岛建设发展规划纲要》,海南省商品住宅价格再次迎来飙升,由 6000 多元每平米,涨至 1 万多元每平米。其中,海口由 5000 多元每平米涨至近 9000 元每平米,三亚由 1 万元每平米涨至近 2 万元每平米,飙升一倍。
2018 年 4 月 13 日,海南全岛建设自贸区(港)这一重大政策利好出台后,
海口商品住宅价格每天涨幅达每平米 500 元到 1000 元,三亚商品住宅价格一夜
之间每平米上涨 3000 元到 8000 元。2018 年 4 月 22 日晚,海南省委、省政府发布了《关于进一步稳定房地产市场的通知》,在已出台限购政策基础上,实施全域限购,被称为“全国最严厉调控措施”。
房地产价格作为房地产业运行的“晴雨表”,不仅是政府宏观调控的重要指标,同时也是社会各界关注的重要民生话题。请根据你们收集到的相关数据,完成以下问题:
- 请对海南省(主要考虑海口和三亚)商品住宅价格的影响因素进行定性和定量分析,并给出各因素之间的关系。
- 请根据问题 1 的结果,建立相应的商品住宅价格的数学模型。
- 若未出台 2018 年 4 月 22 日限购政策,请结合你们的数据和模型按月预测 2018 年 6 月-2019 年 5 月海南省(主要考虑海口和三亚)商品住宅价格。
- 在 2018 年 4 月 22 日限购政策出台后,请重新建立数学模型,并按月预测 2018 年 6 月-2019 年 5 月海南省(主要考虑海口和三亚)商品住宅价格。
5.海南自贸区(港)的成立对海南省经济发展有着深远影响,请对照中国主要城市(北京、上海、广州、深圳或香港特区)同期经济发展状况对商品住宅价格的影响,按季度分析海南省(主要考虑海口或三亚)未来 5 年商品住宅价格的波动情况。
%关联度求解
clc,clear
x=[1 1.162279931 1.312471448 1.42102119 1.528692413 1.671152968 1.859823593;1 1.036314052 1.050667432 1.064877279 1.074924645 1.08267547 1.096885316; ...
1 1.311803131 1.433720014 1.51255772 1.62079063 1.751492285 1.8942448471;1 1.121551952 1.249178893 1.334446101 1.422139286 1.543540222 1.695549892; ...
1 1.05482304 1.10166551 1.183900069 1.228660652 1.283830673 1.612421929;1 1.111607667 1.02858823 0.979622098 0.960377087 0.899064588 1.054287125];
for i=1:6
x(i,:)=x(i,:)/x(i,1); %标准化数据
end
data=x;
n=size(data,2); %求矩阵的列数,即观测时刻的个数
ck=data(1,:); %提出参考数列
bj=data(2:end,:); %提出比较数列
m2=size(bj,1); %求比较数列的个数
for j=1:m2
t(j,:)=bj(j,:)-ck;
end
mn=min(min(abs(t'))); %求最小差
mx=max(max(abs(t'))); %求最大差
rho=0.8; %分辨系数设置
ksi=(mn+rho*mx)./(abs(t)+rho*mx); %求关联系数
r=sum(ksi')/n % 求 关 联 度
[rs,rind]=sort(r,'descend') %对关联度进行排序
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%各个因素曲线
t=[ 2011 2012 2013 2014 2015 2016 2017];
x1=[1 1.162279931 1.312471448 1.42102119 1.528692413 1.671152968 1.859823593];
x2=[1 1.036314052 1.050667432 1.064877279 1.074924645 1.08267547 1.096885316];
x3=[1 1.311803131 1.433720014 1.51255772 1.62079063 1.751492285 1.894244847];
x4=[1 1.121551952 1.249178893 1.334446101 1.422139286 1.543540222 1.695549892];
x5=[1 1.05482304 1.10166551 1.183900069 1.228660652 1.283830673 1.612421929];
y=[1 1.111607667 1.02858823 0.979622098 0.960377087 0.899064588 1.054287125];
plot(t,x1)
hold on
plot(t,x2,'r')
hold on
plot(t,x3,'g')
hold on
plot(t,x4,'k')
hold on
plot(t,x5,'y')
hold on
plot(t,y,'m')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function GM1_1(X0)
%format long ;
X0=[11446 11760 11986 12875 13843 14323 14613 14913 15259 15434 15678 15782 16114 16368 17306 17594];
[m,n]=size(X0);
X1=cumsum(X0); %累加
X2=[];
for i=1:n-1
X2(i,:)=X1(i)+X1(i+1);
end
B=-0.5.*X2 ;
t=ones(n-1,1);
B=[B,t] ; % 求B矩阵
YN=X0(2:end) ;
P_t=YN./X1(1:(length(X0)-1)); %对原始数据序列X0进行准光滑性检验,
%序列x0的光滑比P(t)=X0(t)/X1(t-1)
A=inv(B.'*B)*B.'*YN.' ;
a=A(1)
u=A(2)
c=u/a ;
b=X0(1)-c ;
X=[num2str(b),'exp','(',num2str(-a),'k',')',num2str(c)];
strcat('X(k+1)=',X)
%syms k;
for t=1:length(X0)
k(1,t)=t-1;
end
k
Y_k_1=b*exp(-a*k)+c;
for j=1:15
Y(1,j)=Y_k_1(j+1)-Y_k_1(j);
end
XY=[Y_k_1(1),Y] %预测值
CA=abs(XY-X0) ; %残差数列
Theta=CA %残差检验 绝对误差序列
XD_Theta= CA ./ X0 %残差检验 相对误差序列
AV=mean(CA); % 残差数列平均值
R_k=(min(Theta)+0.5*max(Theta))./(Theta+0.5*max(Theta)) ;% P=0.5
R=sum(R_k)/length(R_k) %关联度
Temp0=(CA-AV).^2 ;
Temp1=sum(Temp0)/length(CA);
S2=sqrt(Temp1) ; %绝对误差序列的标准差
%----------
AV_0=mean(X0); % 原始序列平均值
Temp_0=(X0-AV_0).^2 ;
Temp_1=sum(Temp_0)/length(CA);
S1=sqrt(Temp_1) ; %原始序列的标准差
TempC=S2/S1*100; %方差比
C=strcat(num2str(TempC),'%') %后验差检验 %方差比
%----------
SS=0.675*S1 ;
Delta=abs(CA-AV) ;
TempN=find(Delta<=SS);
N1=length(TempN);
N2=length(CA);
TempP=N1/N2*100;
P=strcat(num2str(TempP),'%') %后验差检验 %计算小误差概率
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%级比计算
clc,clear
x0=[22128 22124 22859 23458 24710 26676 28242 28201 28339 28565 28528 29639 30379 30618 31915 34779]';%注意这里为列向量
n=length(x0);
lamda=x0(1:n-1)./x0(2:n) %计算级比
range=minmax(lamda') %计算级比的范围
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%