几种排序

目录

冒泡排序:

选择排序:

快速排序(二分法)


冒泡排序:

相邻元素两两比较,大的往后放,第一次完毕,最大值出现在了最大索引处

 

public void maopaosort(int[] arr) {
    for (int i = 0; i < arr.length; i++) {
        for (int j = 0; j < arr.length - 1 - i; j++) {
            if (arr[j] > arr[j + 1]) {
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
        }
    }
    print(arr);//遍历打印数组的方法
}

 

 

 

 

 

 

选择排序:

从0索引开始,依次和后面元素比较,小的往前放,第一次完毕,最小值出现在了最小索引处

public void xuanzesort(int[] arr) {
    for (int i = 0; i < arr.length-1; i++) {
        for (int j = i + 1; j < arr.length; j++) {
            if (arr[i] > arr[j]) {
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
    }
    print(arr);
}

快速排序(二分法)

一般将key = arr[0]作为第一次循环的查找的标志

左哨兵寻找比key大的数字,右哨兵寻找比key小的数字,然后将找到的两个数字交换,

当左右哨兵碰头,交换arr[start]和arr[left]。此时在标志的左边全是比标志小的数,在标志的右边全是比标志大的数。以标志位界限,分为左右两段,迭代快排方法继续排序。

var arr = [6,4,5,7,8,2,2,7,9];
console.log(arr);
function quicksort(start,end){
    //验证有效性
    if(start >= end){
        return;
    }
    //标志
    var pivot = arr[start];
    //哨兵
    var left = start;
    var right = end;

    while(left != right){
        //让右边哨兵移动,直到找到了一个数字小于等于了标志
        while(arr[right] >= pivot && right > left){
            right--;
        }
        //让左哨兵移动,知道找到了一个数字大于等于了标志
        while(arr[left] <= pivot && left < right){
            left++;
        }

        if(left < right){
            //交换这个两个数字的位置
            var temp = arr[right];
            arr[right] = arr[left];
            arr[left] = temp;
        }

    }
    //left和right相同了
    //交换右哨兵的数字和标志
    arr[start] = arr[left];
    arr[left] = pivot;

    //此时标志的左边全是小于标志的数,标志的右边全是大于标志的数,然后分为左右两段继续排序,递归调用快速排序
    quicksort(start , left - 1);
    quicksort(right + 1,end);
}
quicksort(0,arr.length - 1);
console.log(arr);

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELMSSA-ELM的具体实现代码,并通过波士顿房价数据集其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例性能对比图表,帮助读者更好地理解复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值