有序数组的平方
本节对应代码随想录中:代码随想录,讲解视频:有序数组的平方_哔哩哔哩_bilibili
习题
题目链接:977. 有序数组的平方 - 力扣(LeetCode)
给你一个按非递减顺序排序的整数数组 nums,返回每个数字的平方组成的新数组,要求也按非递减顺序排序。
示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]
暴力排序
直接能想到的就是先把每个元素平方,然后再进行排序即可
class Solution {
public:
vector<int> sortedSquares(vector<int>& A) {
for (int i = 0; i < A.size(); i++) {
A[i] *= A[i];
}
sort(A.begin(), A.end()); // 快速排序
return A;
}
};
- 时间复杂度:O(n log n)。这段代码首先对每个元素进行平方操作,时间复杂度为 O(n)。然后使用快速排序对数组进行排序,其平均时间复杂度为 O(n log n)。因此,总的时间复杂度为 O(n log n)。
- 空间复杂度:O(1)。这段代码只使用了常数级别的额外空间,即定义了几个整型变量,因此空间复杂度为 O(1)。
双指针
首先来说一下为什么可以使用双指针
元素本来就是有序的,只不过因为里面有负数,负数平方后就可能大于某些正数的平方,从而顺序会发生变化
但是无论正数还是负数,其绝对值越大,那么它平方后也就会越大,即数组越靠近两边,平方后就会越大
那么我们就可以使用双指针,一个指向最左边,一个指向最右边。比较两边哪个平方后更大,存入新的数组中。然后更新指针,直到两个指针相遇,说明遍历完了所有的元素。
我的解法如下:
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
int n = nums.size(), j = n - 1, k = n - 1;
vector<int> copy = nums;
for (int i = 0; i < n; i++,k--) {
if (i == j) {
nums[0] = copy[i] * copy[i];
break;
}
if (copy[i] * copy[i] > copy[j] * copy[j]) {
nums[k] = copy[i] * copy[i];
} else {
nums[k] = copy[j] * copy[j];
j--;
i--;
}
}
return nums;
}
};
- 时间复杂度:O(n)。只进行了一次遍历,所以总的时间复杂度为 O(n)。
- 空间复杂度:O(n)。这段代码使用了一个与原数组相同大小的辅助数组 copy,因此空间复杂度为 O(n)。
看了别人的解法有几点可以注意下
vector<int> copy = nums;
也可以写成vector<int> copy(nums.size(), 0);
,区别是前者会复制 nums 的元素,而后者会将所有元素置0- for 循环中的
i<n
可以i <= j;
,这样就不用再用 if 判断相等时 break 了 - for 循环中的
i++,k--
可以在 for 循环里面写,其实这样更符合逻辑,因为并不是每次都要i++,k--
,只有满足特定情况时才会这样 - 不一定要用 for 循环,用
while(i<=j)
来循环更符合逻辑
双指针思考:上一小节的移除元素中,两个指针都在最左边开始,只不过一个快点,一个慢点,快的用来遍历一遍元素,慢的用来指向满足条件的新的数组的下标;而这一节的双指针,一个在左边,一个在右边,两个指针不断比较,然后都往中间靠拢。上一小节的终止条件是快的指针遍历完一遍就停,而这一节的是当两个指针相遇时(i <= j;
)停止