一个正整数 N 的因子中可能存在若干连续的数字。例如 630 可以分解为 3×5×6×7,其中 5、6、7 就是 3 个连续的数字。给定任一正整数 N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。
输入格式:
输入在一行中给出一个正整数 N(1<N<231)。
输出格式:
首先在第 1 行输出最长连续因子的个数;然后在第 2 行中按 因子1*因子2*……*因子k
的格式输出最小的连续因子序列,其中因子按递增顺序输出,1 不算在内。
输入样例:
630
输出样例:
3
5*6*7
【解答】
#include<iostream>
#include<cmath>
#define ll long long
using namespace std;
int main()
{
ll n;
ll sum = 0, start;//用sum记录最长的因子数,用start记录最长连续因子的起始量
cin >> n;
for (int i = 2; i <= sqrt(n); i++)//当大于sqrt(n)时没有因子,不可用i*i<=n,测试点6会运行超时
{
if (n%i != 0)//不是因子直接跳过
continue;
ll t = n;//用t得到n值
ll j = i;//用j得到i值
ll num = 0;//num记录每次连续因子的长度
while (t%j == 0 && t != 0)//暴力解题,遍历到每一个因子
{
t /= j;//这一步就是防止连续因子的乘积大于n,每找到一个因子就除掉它得到剩余部分
j++;
num++;
}
if (sum < num)//更新sum,此处不能用<=,因为我们是从小到大遍历的,所以当长度相同时不交换,保证最小。
{
sum = num;
start = i;
}
}
if (sum == 0)//若sum==0则为素数,那么长度为一,序列为其本身
cout << 1 << endl << n << endl;
else
{
cout << sum << endl;
for (int i = start; i < sum + start; i++)
{
if (i - start == 0)
cout << i;
else
cout << '*' << i;
}
}
return 0;
}