题意:
n 个点;m 个关系,u -> v:第 u 个点的重量比第 v 个点的重量轻;确定这样的关系是否存在,即是否存在环 ===> 用拓扑排序确定;结果要求:1 - N 点,先满足点 1 重量最小,then 点 2 重量最小,类似字典序。
思路:
显然 1 - N 点重量为 1-N 中的一个,为使编号越小,重量越小,将编号越大的点使其重量越大。
证明请参考:http://blog.sina.com.cn/s/blog_6c7729450100qxbw.html
贪心方法:
当前入度为 0 的点大于一个时,我们先取数字较大的点(队列内递增)。取出的点按的权值从 N-1递减。
关键:
建边方法,(重) -> (轻)
先确定重量大的点!
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 220;
struct Edge{
int v, next;
}edge[maxn*maxn];
int tot, head[maxn];
int n, r, cnt[maxn], in[maxn];
struct P{
int id, w;
}node[maxn];
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
memset(cnt, 0, sizeof(cnt));
memset(in, 0, sizeof(in));
}
void add_edge( int u, int v )
{
edge[tot].v = v;
edge[tot].next = head[u];
head[u] = tot++;
}
int queue[maxn], front, rear;
bool cmp2( int a, int b ){ return a > b; }
bool topusort()
{
int i, u, v, N = n;
front = rear = 0;
for(i = 1; i <= n; i++)if(!in[i])
queue[rear++] = i;
while( front != rear )
{
sort( queue+front, queue+rear, cmp2 );
u = queue[front++];
node[front-1].id = u;
node[front-1].w = N--;
for(i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].v;
in[v]--;
if(!in[v])
queue[rear++] = v;
}
}
if(rear == n)return true;
return false;
}
bool cmp1( P a, P b )
{
return a.id < b.id;
}
int main()
{
int i, u, v, T;
scanf( "%d", &T );
while( T-- )
{
scanf( "%d%d", &n, &r );
init();
while( r-- )
{
scanf( "%d%d", &u, &v );
add_edge( v, u );
in[u]++;
}
if(topusort())
{
sort( node, node+n, cmp1 );
for(i = 0; i < n; i++)
{
if(i == 0)printf( "%d", node[i].w );
else printf( " %d", node[i].w );
}puts("");
}
else
puts("-1");
}
return 0;
}