题目大意:给你一棵树,每条边有一个长度len,从根节点放一个机器人,问你机器人走的路程不超过x能访问的最大点数?
思路:树形DP,设d[ i ][ j ][ k ] 表示以第i个节点为根节点的子树机器人访问j个节点走的最少的路程,k==0表示访问完后又回到i节点,k==1表示访问完后不回来,则状态转移方程为:d[ i ][ j ][ 0 ] = min(d[ v ][ k ][ 0 ] + d[ i ][ j - k ][ 0 ] + 2*len ),d[ i ][ j ][ 1 ] = min(d[ v ][ k ][ 0 ] + d[ i ][ j - k ][ 1 ] + 2*len,d[ v ][ k ][ 1 ] + d[ i ][ j - k ][ 0 ] + len ),v表示i的儿子,len表示i到v的树枝长度。
自己先开始想的时候总想把状态定义为d[ i ][ x ][ k ],表示走x长度的最多节点,定式思维了,一看数据范围,就感觉不会做了。。 要学会根据数据范围合理的设置状态量。。
另外,看了思路,自己敲完的时候,一直WA,检查了好久才发现,,枚举 i 的 j 的时候要倒着来,因为是0、1背包,一直这个地方不注意,看来状态转移时,0、1背包的思想还是不够深入啊。。。 = =
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF = 0x0fffffff ;
const int MAXN = 555 ;
struct Edge
{
int t,next,len;
} edge[MAXN];
int head[MAXN],tot;
void add_edge(int s,int t,int len)
{
edge[tot].t= t;
edge[tot].len = len;
edge[tot].next = head[s];
head[s] = tot++;
}
int n;
int d[MAXN][MAXN][2];
int num[MAXN];
void dfs(int u)
{
for(int i = 0;i<=n;i++)
d[u][i][0] = d[u][i][1] = INF;
d[u][1][0] = 0;
d[u][1][1] = 0;
num[u] = 1;
for(int e = head[u]; e!=-1 ;e = edge[e].next)
{
int v = edge[e].t;
int len = edge[e].len;
dfs(v);
num[u] += num[v];
for(int i = num[u];i>=1;i--)
for(int j = 1;j<=min(i-1,num[v]);j++)
{
d[u][i][0] = min(d[u][i][0],d[v][j][0] + 2*len +d[u][i-j][0]);
d[u][i][1] = min(d[u][i][1],min(d[v][j][0] + 2*len +d[u][i-j][1],d[v][j][1] + len +d[u][i-j][0]));
}
}
}
int is_root[MAXN];
int main()
{
int ca = 0;
while(~scanf("%d",&n)&&n)
{
tot = 0;
memset(head,-1,sizeof(head));
int a,b,c;
for(int i = 0;i<n;i++)
is_root[i] = 1;
for(int i = 1;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
add_edge(b,a,c);
is_root[a] = 0;
}
int root = 0;
for(int i = 0;i<n;i++)
if(is_root[i])
{
root = i;
break;
}
dfs(root);
int q;
scanf("%d",&q);
int x;
printf("Case %d:\n",++ca);
for(int i = 1;i<=q;i++)
{
scanf("%d",&x);
int ans = 0 ;
for(int j = n;j>=1;j--)
{
if(d[root][j][0]<=x||d[root][j][1]<=x)
{
ans = j;
break;
}
}
printf("%d\n",ans);
}
}
return 0;
}