UVALive 4015 Caves

题目大意:给你一棵树,每条边有一个长度len,从根节点放一个机器人,问你机器人走的路程不超过x能访问的最大点数?

思路:树形DP,设d[ i ][ j ][ k ] 表示以第i个节点为根节点的子树机器人访问j个节点走的最少的路程,k==0表示访问完后又回到i节点,k==1表示访问完后不回来,则状态转移方程为:d[ i ][ j ][ 0 ] = min(d[ v ][ k ][ 0 ] + d[ i ][ j - k ][ 0 ] + 2*len ),d[ i ][ j ][ 1 ] = min(d[ v ][ k ][ 0 ] + d[ i ][ j - k ][ 1 ] + 2*len,d[ v ][ k ][ 1 ] + d[ i ][ j - k ][ 0 ] + len ),v表示i的儿子,len表示i到v的树枝长度。

自己先开始想的时候总想把状态定义为d[ i ][ x ][ k ],表示走x长度的最多节点,定式思维了,一看数据范围,就感觉不会做了。。 要学会根据数据范围合理的设置状态量。。 

另外,看了思路,自己敲完的时候,一直WA,检查了好久才发现,,枚举 i 的 j 的时候要倒着来,因为是0、1背包,一直这个地方不注意,看来状态转移时,0、1背包的思想还是不够深入啊。。。 = =

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int INF = 0x0fffffff ;

const int MAXN = 555 ;

struct Edge
{
    int t,next,len;
} edge[MAXN];

int head[MAXN],tot;

void add_edge(int s,int t,int len)
{
    edge[tot].t= t;
    edge[tot].len = len;
    edge[tot].next = head[s];
    head[s] = tot++;
}

int n;

int d[MAXN][MAXN][2];

int num[MAXN];

void dfs(int u)
{
    for(int i = 0;i<=n;i++)
        d[u][i][0] = d[u][i][1] = INF;
    d[u][1][0] = 0;
    d[u][1][1] = 0;
    num[u] = 1;
    for(int e = head[u]; e!=-1 ;e = edge[e].next)
    {
        int v = edge[e].t;
        int len = edge[e].len;
        dfs(v);
        num[u] += num[v];
        for(int i = num[u];i>=1;i--)
            for(int j = 1;j<=min(i-1,num[v]);j++)
            {
                d[u][i][0] = min(d[u][i][0],d[v][j][0] + 2*len +d[u][i-j][0]);
                d[u][i][1] = min(d[u][i][1],min(d[v][j][0] + 2*len +d[u][i-j][1],d[v][j][1] + len +d[u][i-j][0]));
            }
    }
}

int is_root[MAXN];

int main()
{
    int ca = 0;
    while(~scanf("%d",&n)&&n)
    {
        tot = 0;
        memset(head,-1,sizeof(head));
        int a,b,c;
        for(int i = 0;i<n;i++)
            is_root[i] = 1;
        for(int i = 1;i<n;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            add_edge(b,a,c);
            is_root[a] = 0;
        }
        int root = 0;
        for(int i = 0;i<n;i++)
            if(is_root[i])
            {
                root = i;
                break;
            }
        dfs(root);
        int q;
        scanf("%d",&q);
        int x;
        printf("Case %d:\n",++ca);
        for(int i = 1;i<=q;i++)
        {
            scanf("%d",&x);
            int ans = 0 ;
            for(int j = n;j>=1;j--)
            {
                if(d[root][j][0]<=x||d[root][j][1]<=x)
                {
                    ans = j;
                    break;
                }
            }
            printf("%d\n",ans);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值