https://codeforces.com/problemset/problem/687/B
给一堆数字,若已知xmod(这些数字中每一个),问能不能知道xmodk.知道就是yes,不知道就是no.
思路:扩展中国剩余定理的性质应用。
扩展中国剩余定理讲解部分来自:https://www.luogu.com.cn/blog/ShadderLeave/5days-equiv-from-beginner-to-killer
根据EXCRT可得,有解的情况只能是x是这些数lcm的因数。所以判x能否被lcm整除就可以了。
由于数太大,代码上注意求出lcm后%k,同时如果已经是因数了,直接break;
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<cstdio>
#include<algorithm>
#define debug(a) cout<<#a<<"="<<a<<endl;
using namespace std;
const int maxn=1e6+100;
typedef long long LL;
LL c[maxn];
int main(void)
{
cin.tie(0);std::ios::sync_with_stdio(false);
LL n,k;cin>>n>>k;
for(LL i=1;i<=n;i++) cin>>c[i];
LL ans=c[1];
for(LL i=1;i<=n-1;i++)
{
if(ans%k==0)
{
ans=ans%k;
break;
}
LL tmp=c[i]/__gcd(c[i],c[i+1])*c[i+1]%k;//注意modk
ans=tmp;
c[i+1]=tmp;
}
if(ans%k==0) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
return 0;
}