思路1:打表可得如果有两个以及以上的相同质因数,即可yes;
/*来自:李双智学长模板*/
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<map>
#include<stdlib.h>
#include<time.h>
#define times 20
using namespace std;
long long total;
long long factor[110];
map<long long,long long>mmp;///最后用来存质因子的幂的
long long qmul(long long a,long long b,long long M){
a%=M;
b%=M;
long long ans=0;
while (b){
if (b&1){
ans=(ans+a)%M;
}
a=(a<<=1)%M;
b>>=1;
}
return ans%M;
}//快乘,因为两个longlong的数相乘可能会溢出,所以这里转乘法为加法,思想和快速幂相似
long long qpow(long long a,long long b,long long int M){
long long ans=1;
long long k=a;
while(b){
if(b&1)ans=qmul(ans,k,M)%M;
k=qmul(k,k,M)%M;
b>>=1;
}
return ans%M;
}//快速幂
bool witness(long long a,long long n,long long x,long long sum){
long long judge=qpow(a,x,n);
if (judge==n-1||judge==1)return 1;
while (sum--){
judge=qmul(judge,judge,n);
if (judge==n-1)return 1;
}
return 0;
}
bool miller(long long n){
if (n<2)return 0;
if (n==2)return 1;
if ((n&1)==0)return 0;
long long x=n-1;
long long sum=0;
while (x%2==0){
x>>=1;
sum++;
}
for (long long i=1;i<=times;i++){
long long a=rand()%(n-1)+1;
if (!witness(a,n,x,sum))return 0;//费马小定理的随机数检验
}
return 1;
}//判断一个数是否为素数
long long gcd(long long a,long long b){
return b==0?a:gcd(b,a%b);
}//欧几里得算法
long long pollard(long long n,long long c){
long long x,y,d,i=1,k=2;
x=rand()%n;
y=x;
while (1){
i++;
x=(qmul(x,x,n)+c)%n;
d=gcd(y-x,n);
if (d<0)d=-d;
if (d>1&&d<n)return d;
if (y==x)return n;
if (i==k){
y=x;
k<<=1;
}
}
}
void find(long long n){
if (miller(n)){
factor[++total]=n;
return ;
}
long long p=n;
while (p>=n){
p=pollard(p,rand()%(n-1)+1);
}
find(n/p);
find(p);
}//寻找这个数的素因子,并存起来
int main(){
long long n,m,i,t;
scanf("%lld",&t);
while (t--){
mmp.clear();
scanf("%lld",&n);
if (miller(n)||n==1){
printf("no\n");
}
else {
memset(factor,0,sizeof(factor));
total=0;
find(n);
sort(factor+1,factor+total+1);
bool flag=1;
for(long long i=1;i<=total;i++){
///本题可以这样过
///if(n%(factor[i]*factor[i])==0){
/// flag=0;
/// cout<<"yes"<<endl;
/// break;
/// }
mmp[factor[i]]++;///更一般的统计质因子的幂
if(mmp[factor[i]]>=2){
flag=0;
cout<<"yes"<<endl;
break;
}
}
if(flag==1){
cout<<"no"<<endl;
}
///for(int i=1;i<=total;i++) mmp[factor[i]]++;//质因子的幂
///for(int i=1;i<=total;i++) ans*=mmp[factor[i]]+1;//因子个数
///printf("%lld\n",factor[1]);///质因子
}
}
}
Update:
此板子在做gym的一道快速质因子分解的时候T掉了。于是在另外一篇放了倍增优化版本的板子。
https://blog.csdn.net/zstuyyyyccccbbbb/article/details/109501603
思路2: https://www.it610.com/article/1293917594214014976.htm
根据素数密度。
代码来自团长:
#include<iostream>
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<string>
#include<vector>
#include<queue>
#include<algorithm>
#include<deque>
#include<map>
#include<stdlib.h>
#include<set>
#include<iomanip>
#include<stack>
#define ll long long
#define ms(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x & -x
#define fi first
#define ull unsigned long long
#define se second
#define lson (rt<<1)
#define rson (rt<<1|1)
#define endl "\n"
#define bug cout<<"----acac----"<<endl
#define IOS ios::sync_with_stdio(false), cin.tie(0),cout.tie(0)
using namespace std;
const int maxn = 1e5 + 10;
const int maxm = 1e4 + 50;
const double eps = 1e11 - 7;
const int inf = 0x3f3f3f3f;
const ll lnf = 0x3f3f3f3f3f3f3f3f;
const ll mod = 1e6 + 7;
const double pi = 3.141592653589;
int main()
{
/*
ll t;
scanf("%lld",&t);
while(t--){
ll n,x,ti;
scanf("%lld%lld%lld",&n,&x,&ti);
ll ok=x-(2*n-1)*ti;
if(x<=2*n*ti){
printf("%lld\n",4*n*ti);
continue;
}
else{
if(ok<=ti){
printf("%lld\n",4*n*ti+ti);
//
continue;
}
else{
printf("%lld\n",4*n*ti+ x-2*n*ti);
continue;
}
}
printf("%lld\n",min(2*n*ti+max(2*n*ti,x),2*n*ti+max(2*n*ti+t,ti+x)));
}
*/
ll t;
scanf("%lld",&t);
while(t--){
ll n;
scanf("%lld",&n);
ll fa=0;
for(ll i=2;i<=2000000;i++){
ll ok=i*i;
if(ok>n){
break;
}
if(n%ok==0){
fa=1;
break;
}
if(n%i==0){
n=n/i;
}
}
if(fa){
printf("yes\n");
continue;
}
if(n>1){
ll rnm=ceil(sqrt(n));
ll cnm=floor(sqrt(n));
if(rnm*rnm==n&&rnm*rnm==n){
printf("yes\n");
continue;
}
}
printf("no\n");
}
return 0;
}