D ABC Conjecture(欧拉筛)2020 China Collegiate Programming Contest Weihai Site

题意

定义函数rad(x)为x的质因子之积
给定c,求是否能找到两个正整数a,b,使得a+b=c且c>rad(abc)
T(1<=T<=10)
c(1<=c<=1e18)

Sample Input

3
4
18
30

Sample Output

yes
yes
no

思路

对于一个符合条件的数n,我们可以得出,该数一定可以拆分成n=abccd的模式
即该数的因子中一定有某个完全平方数。
那么问题就被简化成了判断是否含有一个完全平方因子,不过我们观察到c<=1e18,那么需要枚举i^2中i的取值范围为i<=1e9的质数,大约为1e8
显然这个复杂度我们是接受不了的,我们需要优化复杂度
我们可以观察到这样一个规律,如果c没有在1-1e12内的完全平方数的因子,那么将c除去前面那些因子,得到c’,如果c有1e12以上的完全平方数因子,那么该因子一定为c’
因此我们可以暴力枚举1e6以内的质数,对于大于1e12的因数进行一次check即可

CODE

#include<string>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
#define LL long long
#define MOD 1000000007
#define MAXN 100050
LL read()
{
	LL w = 1, x = 0;
	char ch = 0;
	while (ch < '0' || ch>'9')
	{
		if (ch == '-')
			w = -1;
		ch = getchar();
	}
	while (ch >= '0' && ch <= '9')
	{
		x = x * 10 + (ch - '0');
		ch = getchar();
	}
	return w * x;
}
LL n, m, cnt, t, prime[1000005],p[1000005];//prime记录素数 
bool v[1000005];//记录是否是合数 
int main()
{
	n = 1000005;
	v[0] = 1;//0不是素数 
	v[1] = 1;//1不是素数 
	for (register int i = 2; i <= n; i++)
	{
		if (!v[i])//如果i是素数 用prime记录,prime里面的素数严格递增 
		{
			prime[++cnt] = i;
		}
		for (register int j = 1; j <= cnt; j++)//遍历所有素数 
		{
			if (prime[j] * i > n)
			{
				break;
			}
			v[prime[j] * i] = 1;
			if (i % prime[j] == 0)//如果该数(i)大于等于这个数的最小质因子,就跳出
			//详见 https://www.cnblogs.com/jason2003/p/9761296.html 解释 
			{
				break;
			}
		}
	}
	for (register int i = 1; i <= cnt; i++)
	{
		p[i] = prime[i] * prime[i];
	}
	int t = read();
	while (t--)
	{
		n = read();
		LL nn = n;
		bool ok = 1;
		for (register int i = 1; i <= cnt; i++)
		{
			if (n % p[i] == 0)
			{
				ok = 0;
				cout << "yes" << endl;
				break;
			}
			if (nn % prime[i] == 0)
			{
				nn /= prime[i];
			}
		}
		if (ok)
		{
			LL ss = sqrt(nn);
			if (ss * ss == nn&&nn!=1)
			{
				cout << "yes" << endl;
			}
			else
			{
				cout << "no" << endl;
			}
		}
	}
	return 0;
}
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页