B - Products of Min-Max (思维+幂次函数递推)

这篇博客探讨了一种解决平方和问题的高效算法,通过递推公式优化了时间复杂度。代码实现中展示了如何从n^2的复杂度降低到线性时间复杂度,对数列进行排序并利用贡献法计算前n项的平方和。适合对算法优化感兴趣的读者深入理解。
摘要由CSDN通过智能技术生成

https://atcoder.jp/contests/arc116/tasks/arc116_b


思路:

第一眼n^2,然后往贡献法想..gg。

正解是在幂次函数这里有个递推。

#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<cstdio>
#include<algorithm>
#define debug(a) cout<<#a<<"="<<a<<endl;
using namespace std;
const int maxn=2e5+1000;
typedef long long LL;
const LL mod=998244353;
inline LL read(){LL x=0,f=1;char ch=getchar();	while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;}
LL a[maxn];
int main(void)
{
  	cin.tie(0);std::ios::sync_with_stdio(false);
    LL n;cin>>n;
    LL ans=0;
    for(LL i=1;i<=n;i++) cin>>a[i],ans=(ans%mod+a[i]*a[i]%mod)%mod;
    sort(a+1,a+1+n);
    LL cnt=0;
    for(LL i=1;i<=n;i++){
        ans=(ans%mod+a[i]%mod*cnt%mod)%mod;
        cnt=(cnt*2%mod+a[i]%mod)%mod;
    }
    cout<<ans%mod<<"\n";
return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值