Min-Max容斥总结

本文介绍了如何使用容斥原理在不直接比较元素大小的情况下求解集合的最大第k大元素和最小第k小元素。通过建立系数并进行二项式反演,得出通用公式,并通过例题解释其应用,包括解决期望值问题和具体编码实现。
摘要由CSDN通过智能技术生成

下用 max ⁡ k ( S ) \max_k(S) maxk(S) 表示集合 S S S 的第 k k k 大元素( k ⩽ ∣ S ∣ k\leqslant|S| kS), max ⁡ ( S ) \max(S) max(S) 表示集合 S S S 的最大元素;最小同理


算法

min-max容斥是一种用于求出给定集合第 k k k 大(小)元素的容斥,通常在比较元素大小较为困难时使用

有一给定集合 S S S,现在我们希望通过不用比较元素之间大小的方式求出 max ⁡ k ( S ) \max_k(S) maxk(S),故考虑构造系数 a i a_i ai 使其满足:
max ⁡ k ( S ) = ∑ ∅ ≠ T ⊆ S a ∣ T ∣ min ⁡ ( T ) \max{_k}(S) = \sum_{\varnothing \not=T\subseteq S}a_{|T|}\min(T) maxk(S)==TSaTmin(T)

n = ∣ S ∣ n=|S| n=S,分别考虑每个元素的贡献:

max ⁡ k ( S ) = ∑ ∅ ≠ T ⊆ S a ∣ T ∣ min ⁡ ( T ) = ∑ i = 1 n max ⁡ i ( S ) ∑ j = 1 i a j ( i − 1 j − 1 ) \max{_k}(S)=\sum_{\varnothing \not=T\subseteq S}a_{|T|}\min(T)=\sum_{i = 1}^n\max{_i}(S)\sum_{j = 1}^{i}a_j\binom{i - 1}{j - 1} maxk(S)==TSaTmin(T)=i=1nmaxi(S)j=1iaj(j1i1)

那么我们有一个自然的想法,令 ∑ j = 1 i a j ( i − 1 j − 1 ) = [ i = k ] \sum_{j = 1}^ia_j\binom{i - 1}{j - 1}=[i =k] j=1iaj(j1i1)=[i=k],上式不就自然满足了吗?
顺着这个思路往下,设 g ( x ) = [ x = k ] g(x)=[x = k] g(x)=[x=k],则有
g ( i ) = ∑ j = 1 i ( i − 1 j − 1 ) a j g(i)=\sum_{j = 1}^{i}\binom{i - 1}{j - 1}a_{j} g(i)=j=1i(j1i1)aj

使用二项式反演,得

a i = ∑ j = 1 i ( − 1 ) i −

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值