对数函数在其定义域内是单调递增函数,取对数后不会改变数据的相对关系。
数据取对数的作用:
1,缩小数据的绝对数值,方便计算。
2,取对数后,可以将乘法计算转换成加法计算。
3,某些情况下,在数据的整个值域中的,不同区间的差异带的影响不同。
例:两组数,500和500,200和800,和为1000。从总和看没差别,若取对数:log500=2.69897,log200=2.30103,log800=2.90309
log500+log500=5.39794,log200+log800=5.20411,前者值更大
4, 取对数后,不会改变数据的性质和相关关系,但缩小了变量的尺度,使得数据更加平稳,也消弱了模型的共线性、方差性等。
5,数据易消除异方差问题。
异方差:如果的方差为,即方差随观察值不同而发生变化(注意的下标),又称非同方差、非恒定方差。
6,在经济学中,常取自然对数再做回归。其前面的参数为百分比变化率(dInx=dx/x)也就是弹性