比较检验

模型比较

选择合适的评估方法和相应的性能度量,计算出性能度量后直接比较。

存在以下问题:

模型评估得到的是测试集上的性能,并非严格意义上的泛化性能,两者并不完全相同

测试集上的性能与样本选取关系很大,不同的划分,测试结果会不同,比较缺乏稳定性

很多模型本身有随机性,即使参数和数据集相同,其运行结果也存在差异

假设检验

统计假设检验(Hypothesis Tset):事先对总体的参数或者分布做一个假设,然后基于已有的样本数据去判断这个假设是否合理。即样本和总体假设之间的不同纯属机会变异(因为随机性误差导致的不同),还是两者确实不同。常用的假设检验方法有T-检验法、X2检验法(卡方检验)、F-检验法等。

基本思想:

从样本推断整体

通过反正法推断假设是否成立

小概率事件在一次试验中基本不会发生

不轻易拒绝原假设

通过显著性水平定义小概率事件不可能发生的概率

全称命题只能被否定而不能被证明

 

假设检验步骤

假设检验的例子:二项式检验

假设检验的例子:T检验

假设检验在模型比较中的应用

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zsyRain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值