扩展欧几里得算法

# 扩展欧几里得算法:
/*
功能:已知a,b  
	 求解满足 ax+by= gcd(a,b) = d 
	 的一组 x,y 
*/

由 辗转相除法 得
gcd(a,b) = gcd(b,a%b)
//a%b = a-[a/b]*b   []:下取整
#原理:ax+by=d --> bx+(a%b)y = d

//	bx' + (a-[a/b]*b)y' = d
//	bx' + ay'- [a/b]*by' = d
//	ay'+ b(x'-[a/b]*y') = d 
	
	x=y'
	y=x'-[a/b]*y'
	
	//要先用temp记下x'
	
int exgcd(int a, int b, int &x, int &y){
	if(b==0){
		x=1;
		y=0;
		//疑问:为什么这里y=0?
		//y=1也可以,为啥,是不是y等于任何数都OK? 
		return a;
	}
	int r = exgcd(b,a%b,x,y); 
	//不能直接返回!!!  先记下返回值 
	//由递归得到这一步用来计算的 x',y'
	//算得这一步的x,y后  再返回 
	
	int temp=x;
	x=y;
	y=temp - a/b*y;
	
	return r;
}

通过 扩展欧几里得 求得一组特解(X,Y)
那么如何求通解呢?

  aX + bY = d 如果将x+k1, y-k2 仍然保持原方程成立
  则 x+k1, y-k2就是方程新解 
  如何求k1, k2 ?
  
  a*(x+k1) + b*(y-k2) = d
  a*x + a*k1 + b*y - b*y2 = d
  a*x + b*y + a*k1 - b*y2 = d
  若要使原方程成立,则 a*k1=b*y2
  k1=b,k2=a 显然不能包括所有解
   
  当  a*k1 = b*k2 = t*lcm(a,b)可以保证得到所有解 
  lcm(a,b)=a*b/gcd(a,b)
  k1=b/gcd(a,b)
  k2=a/gcd(a,b)
  
  通解:
  x = X + b/gcd(a,b)
  y = Y - a/gcd(a,b)
  
  对于 ax+by=c
  当  c 是 gcd(a,b)倍数 时  方程有解 
  即  gcd(a,b) * t =c
	t= c/gcd(a,b)
	x= tX + b/gcd(a,b)
	y= tY + a/gcd(a,b)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值