1:算法思想
(1)先求最大公因数
辗转相除法:首先保证x>y,不然交换两个数值,x要一直保持是最大值,求余数d=x%y,判断余数是否为0,如果为0,则y是最大公因数,否则x=y,y=d;直到d为0,此时最大公因数是y
(2)再求最小公倍数
最小公倍数是等于输入的两个整数的乘积再除以最大公约数
#include <iostream>
using namespace std;
//辗转相除法,两个数的最大公约数,指的是能同时整除他们的整数
int gcd(int a,int b)
{
int da=max(a,b);
int xiao=min(a,b);
if(da%xiao==0)
return xiao;
else
return gcd(xiao,da%xiao);
}
//两个数的最小公倍数等于两个整数之积除以最大公倍数
int lcm(int a,int b)
{
return a*b/gcd(a,b);
}
int main()
{
int x,y;
cout<<"输入这两个整数:";
cin>>x>>y;
cout<<"这两个整数的最大公因数:"<<gcd(x,y)<<endl;
cout<<"这两个整数的最小公倍数:"<<lcm(x,y)<<endl;
}