c++实现最大公因数和最小公倍数

 最大公因数和最小公倍数的介绍

读这篇文章,请你先对最大公因数以及最小公倍数进行了解:

最大公因数(英文名:gcd)

  • 定义:最大公因数,也称最大公约数,指两个或多个整数共有约数(因数)中最大的一个。
  • 求法
    • 列举法:分别列出两个数的所有约数,然后找出它们共有的约数中最大的那个。
    • 分解质因数法
    • 辗转相除法:用较大数除以较小数得到商和余数,再用除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公因数。
  • 最小公倍数(英文名:lcm)

    • 几个数共有的倍数叫做这几个数的公倍数,其中除 0 以外最小的一个公倍数,叫做这几个数的最小公倍数。例如,4 的倍数有 4、8、12、16、20、24……,6 的倍数有 6、12、18、24、30……,4 和 6 的公倍数有 12、24……,其中最小的是 12,所以 4 和 6 的最小公倍数是 12,可记作[4,6]:12。
    • 求法
      • 列举法:分别列出两个数的倍数,然后找出它们共有的倍数中最小的那个。如求 3 和 5 的最小公倍数,3 的倍数有 3、6、9、12、15、18……,5 的倍数有 5、10、15、20……,它们的最小公倍数是 15。
    • 分解质因数法:把它们公有的质因数与每个数独有的质因数连乘起来,所得的积就是它们的最小公倍数。例如,12=2×2×3,15=3×5,所以
    • 公式法:对于两个数a和b,[a,b]=a*b/(a,b)。例如:

代码:

#include <bits/stdc++.h>
#include<conio.h>
using namespace std;
long long x=0,y=0;
long long pri[100000],cnt=0;
long long gcd(long long a,long long b) {
	return !b?a:gcd(b,a%b);
}
void gprime(long long num) {
	cout<<num<<"=";
	long long divisor=2;
	bool first=true;
	while(num>1) {
		if(num%divisor==0) {
			if(!first) {
				cout<<"*";
			}
			cout<<divisor;
			num/=divisor;
			first=false;
		} else {
			divisor++;
		}
	}
	cout<<endl;
}
vector<long long>commonFactors(long long a,long long b) {
	vector<long long>factors;
	for(long long i=1; i<=min(a,b); i++) {
		if(a%i==0&&b%i==0) {
			factors.push_back(i);
		}
	}
	return factors;
}
long long poww(long long x) {
	long long f1=x,cnt=0;
	while(f1) {
		f1/=10;
		cnt++;
	}
	return cnt;
}
bool Is_Prime(long long x) {
	for(long long i=2; i<x; i++) {
		if(x%i==0) {
			return 0;
		}
	}
	return 1;
}
void Print(long long a,long long b) {
	for(int i=1;i<=cnt;i++){
		pri[i]=0;
	}
	cnt=0;
	cout<<"分解质因数过程:"<<endl;
	gprime(a);
	gprime(b);
	vector<long long>factors=commonFactors(a,b);
	cout<<a<<"和"<<b<<"的公因数有:";
	for(long long factor:factors) {
		cout<<factor<<" ";
	}
	cout<<"\n";
	if(gcd(a,b)==1) {
		cout<<"互质,没有过程。\n";
	} else {
		cout<<"输出短除法过程\n";
		long long k=poww(a)+poww(b)+5,back;
		long long fa=a,fb=b;
		while(gcd(fa,fb)!=1) {
			for(long long i=2;; i++) {
				if(Is_Prime(i)&&fa%i==0&&fb%i==0) {
					cnt++;
					pri[cnt]=i;
					cout<<i<<" | "<<fa<<" "<<fb<<"\n";
					for(long long j=1; j<=poww(i)+1; j++) {
						cout<<" ";
					}
					for(long long j=1; j<=k; j++) {
						cout<<"-";
					}
					fa/=i;
					fb/=i;
					cout<<"\n";
					if(gcd(fa,fb)==1) {
						back=i;
						x=fa;
						y=fb;
					}
					break;
				}
			}
		}
		for(long long i=1; i<=poww(back)+3; i++) {
			cout<<" ";
		}
		cout<<fa<<" "<<fb<<"\n";
	}
	if(gcd(a,b)==1) {
		cout<<"("<<a<<","<<b<<"):"<<gcd(a,b)<<"\n";
		cout<<"["<<a<<","<<b<<"]:";
		if(gcd(a,b)==1) {
			cout<<a<<"*"<<b<<"\n";
			for(long long i=1; i<=poww(a)+poww(b)+3; i++) {
				cout<<" ";
			}
			cout<<"=";
		}
		cout<<a*b/gcd(a,b);
		return ;
	}
	cout<<"("<<a<<","<<b<<"):";
	long long anss=1;
	for(long long i=1; i<=cnt; i++) {
		anss*=pri[i];
		cout<<pri[i];
		if(i!=cnt) {
			cout<<"*";
		}
	}
	cout<<"\n";
	for(long long i=1; i<=poww(a)+poww(b)+3; i++) {
		cout<<" ";
	}
	cout<<"="<<anss;
	cout<<"\n["<<a<<","<<b<<"]:";
	for(long long i=1; i<=cnt; i++) {
		cout<<pri[i]<<"*";
	}
	cout<<x<<"*"<<y<<"\n";
	for(long long i=1; i<=poww(a)+poww(b)+3; i++) {
		cout<<" ";
	}
	cout<<"="<<anss<<"*"<<x*y<<"\n";
	for(long long i=1; i<=poww(a)+poww(b)+3; i++) {
		cout<<" ";
	}
	cout<<"="<<a*b/gcd(a,b)<<"\n";
	cout<<"("<<a<<","<<b<<"):"<<gcd(a,b)<<"\n";
	cout<<"["<<a<<","<<b<<"]:";
	if(gcd(a,b)==1) {
		cout<<a<<"*"<<b<<"\n";
		for(long long i=1; i<=poww(a)+poww(b)+3; i++) {
			cout<<" ";
		}
		cout<<"=";
	}
	cout<<a*b/gcd(a,b);
}
bool srsr() {
	cout<<"\n是否继续(0结束,其他数字继续):\n";
	int sr;
	cin>>sr;
	return sr;
}
int main() {
	system("cls");
	cout<<"输入两个整数:\n";
	cout<<"本程序用于计算两个数的gcd(最大公因数、最大公约数)以及lcm,其中,(a,b)表示两个数的gcd,[a,b]表示两个数的lcm\n";
	long long a,b;
	cin>>a>>b;
	system("cls");
	if(gcd(a,b)==1) {
		cout<<"检测到互质,将自动省略过程\n";
		Print(a,b);
		if(srsr()) {
			return main();
		} else {
			return 0;
		}
	}
	if(gcd(a,b)==min(a,b)) {
		cout<<"检测到有倍数关系,这里推荐使用不要过程,请慎重选择\n";
	}
	cout<<"输入模式:\n";
	cout<<"0.只要答案\n";
	cout<<"其他任何数.要过程\n";
	long long sr;
	if(!sr&&gcd(a,b)==min(a,b)) {
		cout<<"("<<a<<","<<b<<"):"<<min(a,b)<<"\n";
		cout<<"["<<a<<","<<b<<"]:"<<max(a,b)<<"\n";
		if(srsr()) {
			return main();
		} else {
			return 0;
		}
	}
	cin>>sr;
	system("cls");
	if(!sr) {
		cout<<"("<<a<<","<<b<<"):"<<gcd(a,b)<<"\n";
		cout<<"["<<a<<","<<b<<"]:";
		if(gcd(a,b)==1) {
			cout<<a<<"*"<<b<<"\n";
			for(long long i=1; i<=poww(a)+poww(b)+3; i++) {
				cout<<" ";
			}
			cout<<"=";
		}
		cout<<a*b/gcd(a,b);
		if(srsr()) {
			return main();
		} else {
			return 0;
		}
	}
	Print(a,b);
	if(srsr()) {
		return main();
	} else {
		return 0;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值