基于图卷积神经网络的人体RFID标签人体活动识别
(注:阅读论文的一些总结)
-
知识点1:带残差网络的改进FSCN
-
知识点2:并行RFID骨架活动图卷积网络(PR-FSCN)
-
知识点3:HAR
HAR 是人体活动识别(Human Activity Recognition)的缩写,它是一种技术,旨在利用传感器数据、图像数据或其他类型的数据来识别人类的特定活动或行为。这些活动可能涵盖日常生活中的各种行为,例如步行、跑步、骑车、坐着、站立、上楼梯、下楼梯等等。HAR 技术在许多领域都有应用,包括健康监测、运动追踪、智能家居、虚拟现实、安全监控等。
HAR 的实现通常依赖于机器学习和模式识别等技术,通过从传感器或图像数据中提取特征,并将这些特征输入到机器学习模型中进行分类,来实现对人体活动的识别。常用的传感器包括加速度计、陀螺仪、磁力计等,这些传感器通常集成在智能手机、智能手表、运动追踪器等可穿戴设备中。
HAR 技术的发展对于智能健康、智能家居、智能交通等领域具有重要意义,它可以帮助人们更好地了解自己的行为习惯,提供个性化的健康建议,改善生活质量
摘要(Abstract)
(1)设计了人体RFID骨架,充分感知人体活动的关键特征,并进一步提出利用RFID(隐私保护、身份识别、无电池维护)的人体活动识别方案.
(2)提出了基线RFID骨架活动图卷积网络(FSCN),通过使用图卷积网络(GCN),和FSCN分类的RFID骨架活动图的人类活动识别。
(3)针对FSCN中标签响应信号特征数据过平滑和信息聚集程度不同的问题,提出了带残差网络的改进FSCN(R-FSCN)。
(4)设计了并行RFID骨架活动图卷积网络(PR-FSCN)来优化R-FSCN。
(5)大量的实验表明,PR-FSCN比现有的HAR具有更好的综合优势,具有更高的识别性能。
(6)第一个为HAR设计合适的人体RFID骨架,并成功引入GCN研究具有高识别性能的新的绑定RFIDHAR的工作。
I引言
1.HAR适用于主动健康服务[3]、[4]、[5]、[6]、人机交互[7]、[8]、虚拟现实[9]、[10]、行为分析[11]、[12]、[13]、[14]、动画制作[15]、交通安全[16]等领域。
2.识别活动可以是一般的活动,如站立,也可以是特定的活动,如运动员的比赛动作。
3.人类活动具有多态性,多种人类活动之间存在相似性
4.缺乏有效地将感知到的活动特征映射到活动本身的模型,导致识别的活动少,分类精度低。识别也是分类。
5.传统:基于传感技术的活动识别方法主要有机器视觉、可穿戴传感器、传统无线信号等。
6.暴露缺点:
(1)基于机器视觉的方法存在隐私泄露、视距和光线限制等问题。
(2)基于可穿戴传感器的方法也存在电池维护等问题。
(3)传统的基于无线信号的方法不具备身份识别能力
7.开始介绍自己的工作亮点
因此,本文从新的视角有效解决这些问题
(1)人体活动感知、人体活动模型、人体活动识别模型.充分的实验评估
(2)利用RFID提出了高度准确和细粒度的HAR模型,具有隐私保护,超视距操作,无需电池维护和识别。
*本文的主要贡献包括:
(1)基于该骨架的RFID骨架活动图,对人体RFID骨架节点上随机排列的大量标签响应信号特征数据的规范化处理方法,以及便于训练HAR模型的骨架特征矩阵。
(2)FSCN能够将感知到的人体活动特征映射到活动本身,从而在大量人体活动的情况下获得良好的识别性能。
(3)针对基线FSCN中标签响应信号特征数据过平滑和信息聚集程度不同的问题,优化模型计算资源,丰富卷积结果,分别设计了残差网络和并行卷积。此外,提出了两个连续的R—FSCN和PR—FSCN。
II对现有的HAR进行了总结,重点分析了基于RFID的HAR的优势。
III提出了人体活动识别的模型和方法,包括基线FSCN及其两种改进模型。
IV通过实验验证了模型的先进性和有效性。
V对本文的工作进行了总结,并对下一步的研究工作进行了展望。