luogu P4881 hby与tkw的基情

背景:

博客还有好多没写,看看这个周日有空吗。

题目传送门:

https://www.luogu.org/problem/P4881

题意:

求: a n s = ∑ i = 1 n i ⋅ f i [ n m o d    2 ] ans=\sum_{i=1}^{n}i\cdot f_i[n\mod 2] ans=i=1nifi[nmod2],其中 f i f_i fi表示字符集为小写字母的回文串的个数。

思路:

考虑回文串的前一段,显然 f i = 2 6 ⌈ i 2 ⌉ f_i=26^{\lceil\frac{i}{2}\rceil} fi=262i
那么有:
a n s = ∑ i = 1 n i ⋅ 2 6 ⌈ i 2 ⌉ [ i m o d    2 = 1 ] ans=\sum_{i=1}^{n}i\cdot26^{\lceil\frac{i}{2}\rceil}[i\mod 2=1] ans=i=1ni262i[imod2=1]

考虑用 k k k枚举奇数,有:
a n s = ∑ k = 1 ⌈ n 2 ⌉ ( 2 k − 1 ) ⋅ 2 6 ⌈ 2 k − 1 2 ⌉ ans=\sum_{k=1}^{\lceil\frac{n}{2}\rceil}(2k-1)\cdot26^{\lceil\frac{2k-1}{2}\rceil} ans=k=12n(2k1)2622k1

( 1 )   a n s = ∑ k = 1 ⌈ n 2 ⌉ ( 2 k − 1 ) ⋅ 2 6 k ( 2 )   26 a n s = ∑ k = 1 ⌈ n 2 ⌉ ( 2 k − 1 ) ⋅ 2 6 k + 1 \begin{aligned}&(1)\ ans=\sum_{k=1}^{\lceil\frac{n}{2}\rceil}(2k-1)\cdot26^{k}\\ &(2)\ 26ans=\sum_{k=1}^{\lceil\frac{n}{2}\rceil}(2k-1)\cdot26^{k+1}\end{aligned} (1) ans=k=12n(2k1)26k(2) 26ans=k=12n(2k1)26k+1

( 2 ) − ( 1 ) (2)-(1) (2)(1)(考虑 2 6 o p 26^{op} 26op次方一起计算, o p ∈ [ 1 , ⌈ n 2 ⌉ ] ∩ N + op∈[1,\lceil\frac{n}{2}\rceil]∩N_+ op[1,2n]N+)得:
25 a n s = − 26 + 2 6 ⌈ n 2 ⌉ + 1 n + ∑ i = 2 ⌈ n 2 ⌉ − 2 ⋅ 2 6 i 25ans=-26+26^{\lceil\frac{n}{2}\rceil+1}n+\sum_{i=2}^{\lceil\frac{n}{2}\rceil}-2\cdot26^i 25ans=26+262n+1n+i=22n226i

a n s = − 26 + 2 6 ⌈ n 2 ⌉ + 1 n − 2 ∑ i = 2 ⌈ n 2 ⌉ 2 6 i 25 ans=\frac{-26+26^{\lceil\frac{n}{2}\rceil+1}n-2\sum_{i=2}^{\lceil\frac{n}{2}\rceil}26^i}{25} ans=2526+262n+1n2i=22n26i

后面就是一个等比数列求和,化简一下就可以了,这个在草稿本上写写即可。
n m o d    2 = 0 n\mod2=0 nmod2=0时,让 n − 1 n-1 n1即可,反正第 n n n项不产生贡献,其实是我不特判会 wrong answer \text{wrong answer} wrong answer

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define mod 1000000007
#define inv25 280000002
using namespace std;
	LL n;
LL ksm(LL x,LL k)
{
	LL tot=1;
	for(;k;k>>=1)
	{
		if(k&1) tot=tot*x%mod;
		x=x*x%mod;
	}
	return tot;
}
LL calc(LL x)
{
	return (-26ll*26ll+ksm(26,x+1)+mod)%mod*inv25%mod;
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%lld",&n);
		if(!(n&1)) n--;
		printf("%lld\n",(-26ll+ksm(26,(n+1)/2+1)*n%mod-2ll*calc((n+1)/2)%mod+mod)%mod*inv25%mod);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值