费曼积分法

简单来说,费曼积分法就是通过构造有系数的积分,对新式子先求导后积分使得积分式简化的做法。

T1

S = ∫ 0 1 ln ⁡ ( x + 1 ) x 2 + 1 d x S=\int_{0}^{1}\frac{\ln(x+1)}{x^2+1}\mathrm{d}x S=01x2+1ln(x+1)dx

I ( a ) = ∫ 0 1 ln ⁡ ( a x + 1 ) x 2 + 1 d x I(a)=\int_{0}^{1}\frac{\ln(ax+1)}{x^2+1}\mathrm{d}x I(a)=01x2+1ln(ax+1)dx,显然 I ( 0 ) = 0 , I ( 1 ) = S I(0)=0,I(1)=S I(0)=0,I(1)=S

∂ I ∂ a = ∫ 0 1 a ( a x + 1 ) ( x 2 + 1 ) d x = 1 a 2 + 1 ∫ 0 1 ( a + x x + 1 − a a x + 1 ) d x = 1 a 2 + 1 [ a ⋅ arctan ⁡ x ∣ 0 1 + 1 2 ln ⁡ ( x 2 + 1 ) ∣ 0 1 − ln ⁡ ( a x + 1 ) ∣ 0 1 ] = 1 a 2 + 1 [ a ⋅ π 4 + 1 2 ln ⁡ 2 − ln ⁡ ( a + 1 ) ] = a π + 2 ln ⁡ 2 − 4 ln ⁡ ( a + 1 ) 4 ( a 2 + 1 ) \begin{aligned}\frac{\partial I}{\partial a}&=\int_{0}^{1}\frac{a}{(ax+1)(x^2+1)}\mathrm{d}x\\ &=\frac{1}{a^2+1}\int_{0}^{1}(\frac{a+x}{x+1}-\frac{a}{ax+1})\mathrm dx\\ &=\frac{1}{a^2+1}[a\cdot \arctan x|_{0}^{1}+\frac{1}{2}\ln(x^2+1)|_{0}^{1}-\ln(ax+1)|_{0}^{1}]\\ &=\frac{1}{a^2+1}[a\cdot\frac{\pi}{4}+\frac{1}{2}\ln2-\ln(a+1)]\\ &=\frac{a\pi+2\ln2-4\ln(a+1)}{4(a^2+1)} \end{aligned} aI=01(ax+1)(x2+1)adx=a2+1101(x+1a+xax+1a)dx=a2+11[aarctanx01+21ln(x2+1)01ln(ax+1)01]=a2+11[a4π+21ln2ln(a+1)]=4(a2+1)+2ln24ln(a+1)

由牛顿莱布尼茨公式 ∫ a b f ′ ( x ) d x = f ( b ) − f ( a ) \int_{a}^{b}f'(x)\mathrm{d}x=f(b)-f(a) abf(x)dx=f(b)f(a),可知
I ( 1 ) − I ( 0 ) = ∫ 0 1 ∂ I ∂ a d a I(1)-I(0)=\int_{0}^{1}\frac{\partial I}{\partial a}\mathrm{d}a I(1)I(0)=01aIda

I ( 0 ) = 0 , I ( 1 ) = S I(0)=0,I(1)=S I(0)=0,I(1)=S,因此
S = ∫ 0 1 ∂ I ∂ a d a = ∫ 0 1 a π + 2 ln ⁡ 2 − 4 ln ⁡ ( a + 1 ) 4 ( a 2 + 1 ) d a = ∫ 0 1 a π + 2 ln ⁡ 2 4 ( a 2 + 1 ) d a − ∫ 0 1 4 ln ⁡ ( a + 1 ) 4 ( a 2 + 1 ) d a = ∫ 0 1 a π + 2 ln ⁡ 2 4 ( a 2 + 1 ) d a − S ∴ S = ∫ 0 1 a π + 2 ln ⁡ 2 8 ( a 2 + 1 ) d a = 1 8 ( π ⋅ 1 2 ln ⁡ ( a 2 + 1 ) ∣ 0 1 + 2 ln ⁡ 2 ⋅ arctan ⁡ a ∣ 0 1 ) = 1 8 ( π ln ⁡ 2 2 + π ln ⁡ 2 2 ) = π ln ⁡ 2 8 \begin{aligned}S&=\int_{0}^{1}\frac{\partial I}{\partial a}\mathrm{d}a\\ &=\int_{0}^{1}\frac{a\pi+2\ln2-4\ln(a+1)}{4(a^2+1)}\mathrm{d}a\\ &=\int_{0}^{1}\frac{a\pi+2\ln2}{4(a^2+1)}\mathrm{d}a-\int_{0}^{1}\frac{4\ln(a+1)}{4(a^2+1)}\mathrm{d}a\\ &=\int_{0}^{1}\frac{a\pi+2\ln2}{4(a^2+1)}\mathrm{d}a-S\\ \therefore S&=\int_{0}^{1}\frac{a\pi+2\ln2}{8(a^2+1)}\mathrm{d}a\\ &=\frac{1}{8}(\pi\cdot\frac{1}{2}\ln(a^2+1)|_{0}^{1}+2\ln2\cdot\arctan a|_{0}^{1})\\ &=\frac{1}{8}(\frac{\pi\ln2}{2}+\frac{\pi\ln2}{2})\\ &=\frac{\pi\ln2}{8} \end{aligned} SS=01aIda=014(a2+1)+2ln24ln(a+1)da=014(a2+1)+2ln2da014(a2+1)4ln(a+1)da=014(a2+1)+2ln2daS=018(a2+1)+2ln2da=81(π21ln(a2+1)01+2ln2arctana01)=81(2πln2+2πln2)=8πln2

T2

S = ∫ 0 π 2 ln ⁡ ( 4 cos ⁡ 2 x + sin ⁡ 2 x ) d x S=\int_{0}^{\frac{\pi}{2}}\ln(4\cos^2x+\sin^2x)\mathrm{d}x S=02πln(4cos2x+sin2x)dx

I ( a ) = ∫ 0 π 2 ln ⁡ ( a 2 cos ⁡ 2 x + sin ⁡ 2 x ) d x I(a)=\int_{0}^{\frac{\pi}{2}}\ln(a^2\cos^2x+\sin^2x)\mathrm{d}x I(a)=02πln(a2cos2x+sin2x)dx,显然 I ( 1 ) = 0 , I ( 2 ) = S I(1)=0,I(2)=S I(1)=0,I(2)=S

∂ I ∂ a = ∫ 0 π 2 2 a cos ⁡ 2 x a 2 cos ⁡ 2 x + sin ⁡ 2 x d x = ∫ 0 π 2 2 a a 2 + tan ⁡ 2 x d x = ∫ 0 π 2 2 a sec ⁡ 2 x a 2 sec ⁡ 2 x + tan ⁡ 2 x sec ⁡ 2 x d x = ∫ 0 π 2 2 a ⋅ d tan ⁡ x sec ⁡ 2 x ( a 2 + tan ⁡ 2 x ) = ∫ 0 π 2 2 a ⋅ d tan ⁡ x ( tan ⁡ 2 x + 1 ) ( a 2 + tan ⁡ 2 x ) u = tan ⁡ x = ∫ 0 + ∞ 2 a ⋅ d u ( u 2 + 1 ) ( a 2 + u 2 ) = 2 a a 2 − 1 ∫ 0 + ∞ ( 1 1 + u 2 − 1 a 2 + u 2 ) ⋅ d u = 2 a a 2 − 1 ( arctan ⁡ u ∣ 0 ∞ − 1 a arctan ⁡ x ∣ 0 ∞ ) = 2 a a 2 − 1 ( π 2 − 1 a ⋅ π 2 ) = π a + 1 \begin{aligned}\frac{\partial I}{\partial a}&=\int_{0}^{\frac{\pi}{2}}\frac{2a\cos^2x}{a^2\cos^2x+\sin^2x}\mathrm{d}x\\ &=\int_{0}^{\frac{\pi}{2}}\frac{2a}{a^2+\tan^2x}\mathrm{d}x\\ &=\int_{0}^{\frac{\pi}{2}}\frac{2a\sec^2x}{a^2\sec^2x+\tan^2x\sec^2x}\mathrm{d}x\\ &=\int_{0}^{\frac{\pi}{2}}\frac{2a\cdot\mathrm{d}\tan x}{\sec^2x(a^2+\tan^2x)}\\&=\int_{0}^{\frac{\pi}{2}}\frac{2a\cdot\mathrm{d}\tan x}{(\tan^2x+1)(a^2+\tan^2x)}\\ u=\tan x\\ &=\int_{0}^{+\infty}\frac{2a\cdot\mathrm{d}u}{(u^2+1)(a^2+u^2)}\\ &=\frac{2a}{a^2-1}\int_{0}^{+\infty}(\frac{1}{1+u^2}-\frac{1}{a^2+u^2})\cdot\mathrm{d}u\\ &=\frac{2a}{a^2-1}(\arctan u|_{0}^{\infty}-\frac{1}{a}\arctan x|_{0}^{\infty})\\ &=\frac{2a}{a^2-1}(\frac{\pi}{2}-\frac{1}{a}\cdot\frac{\pi}{2})\\ &=\frac{\pi}{a+1} \end{aligned} aIu=tanx=02πa2cos2x+sin2x2acos2xdx=02πa2+tan2x2adx=02πa2sec2x+tan2xsec2x2asec2xdx=02πsec2x(a2+tan2x)2adtanx=02π(tan2x+1)(a2+tan2x)2adtanx=0+(u2+1)(a2+u2)2adu=a212a0+(1+u21a2+u21)du=a212a(arctanu0a1arctanx0)=a212a(2πa12π)=a+1π

∴ S = I ( 2 ) − I ( 1 ) = ∫ 1 2 ∂ I ∂ a d a = ∫ 1 2 π a + 1 d a = π ⋅ ln ⁡ ( a + 1 ) ∣ 1 2 = π ln ⁡ 3 2 \begin{aligned}\therefore S&=I(2)-I(1)\\ &=\int_{1}^{2}\frac{\partial I}{\partial a}\mathrm{d}a\\ &=\int_{1}^{2}\frac{\pi}{a+1}\mathrm{d}a\\ &=\pi\cdot\ln(a+1)|_{1}^{2}\\ &=\pi\ln\frac{3}{2} \end{aligned} S=I(2)I(1)=12aIda=12a+1πda=πln(a+1)12=πln23

由以上可以得到一个更一般的式子
∫ 0 π 2 ln ⁡ ( a 2 cos ⁡ 2 x + b 2 sin ⁡ 2 x ) d x = π ln ⁡ ∣ a ∣ + ∣ b ∣ 2 \int_{0}^{\frac{\pi}{2}}\ln(a^2\cos^2x+b^2\sin^2x)\mathrm {d}x=\pi\ln\frac{|a|+|b|}{2} 02πln(a2cos2x+b2sin2x)dx=πln2a+b

浅写一下,
∫ 0 π 2 ln ⁡ ( a 2 cos ⁡ 2 x + b 2 sin ⁡ 2 x ) d x = ∫ 0 π 2 [ 2 ln ⁡ ∣ b ∣ + ln ⁡ ( a 2 b 2 cos ⁡ 2 x + sin ⁡ 2 x ) ] d x = ∫ 0 π 2 2 ln ⁡ ∣ b ∣ d x + ∫ 0 ∣ a ∣ ∣ b ∣ π t + 1 d t = π ln ⁡ ∣ a ∣ + ∣ b ∣ 2 \begin{aligned}\int_{0}^{\frac{\pi}{2}}\ln(a^2\cos^2x+b^2\sin^2x)\mathrm {d}x&=\int_{0}^{\frac{\pi}{2}}[2\ln |b|+\ln(\frac{a^2}{b^2}\cos^2x+\sin^2x)]\mathrm{d}x\\ &=\int_{0}^{\frac{\pi}{2}}2\ln|b|\mathrm{d}x+\int_{0}^{\frac{|a|}{|b|}}\frac{\pi}{t+1}\mathrm{d}t\\ &=\pi\ln\frac{|a|+|b|}{2} \end{aligned} 02πln(a2cos2x+b2sin2x)dx=02π[2lnb+ln(b2a2cos2x+sin2x)]dx=02π2lnbdx+0bat+1πdt=πln2a+b

T3

狄利克雷积分
S = ∫ 0 + ∞ sin ⁡ x x d x S=\int_{0}^{+\infty}\frac{\sin x}{x}\mathrm{d}x S=0+xsinxdx

I ( a ) = ∫ 0 + ∞ e − a x ⋅ sin ⁡ x x d x I(a)=\int_{0}^{+\infty}e^{-ax}\cdot\frac{\sin x}{x}\mathrm{d}x I(a)=0+eaxxsinxdx,显然 I ( 0 ) = S , I ( + ∞ ) = 0 I(0)=S,I(+\infty)=0 I(0)=S,I(+)=0
其中 e − a x e^{-ax} eax视为缩放因子,与用留数定理做积分中的 e i m e^{\mathrm{i}m} eim有较强的联系。

T = ∂ I ∂ a = − ∫ 0 + ∞ e − a x ⋅ sin ⁡ x d x = 1 a ∫ 0 + ∞ sin ⁡ x d e − a x = 1 a sin ⁡ x e − a x ∣ 0 ∞ − 1 a ∫ 0 + ∞ e − a x ⋅ cos ⁡ x d x = − 1 a ∫ 0 + ∞ e − a x ⋅ cos ⁡ x d x = 1 a 2 ∫ 0 + ∞ cos ⁡ x d e − a x = 1 a 2 ∫ 0 + ∞ cos ⁡ x e − a x ∣ 0 ∞ − 1 a 2 ∫ 0 + ∞ e − a x ⋅ ( − sin ⁡ x ) d x = − 1 a 2 + 1 a 2 ∫ 0 + ∞ e − a x ⋅ sin ⁡ x d x = − 1 a 2 + 1 a 2 ( − T ) ⇒ ∂ I ∂ a = T = − 1 a 2 + 1 \begin{aligned}T=\frac{\partial I}{\partial a}&=-\int_{0}^{+\infty}e^{-ax}\cdot\sin x\mathrm{d}x\\ &=\frac{1}{a}\int_{0}^{+\infty}\sin x\mathrm{d}{e^{-ax}}\\ &=\frac{1}{a}\sin xe^{-ax}|_{0}^{\infty}-\frac{1}{a}\int_{0}^{+\infty}e^{-ax}\cdot\cos x\mathrm{d}x\\ &=-\frac{1}{a}\int_{0}^{+\infty}e^{-ax}\cdot\cos x\mathrm{d}x\\ &=\frac{1}{a^2}\int_{0}^{+\infty}\cos x\mathrm{d}{e^{-ax}}\\ &=\frac{1}{a^2}\int_{0}^{+\infty}\cos xe^{-ax}|_{0}^{\infty}-\frac{1}{a^2}\int_{0}^{+\infty}e^{-ax}\cdot(-\sin x)\mathrm{d}x\\ &=-\frac{1}{a^2}+\frac{1}{a^2}\int_{0}^{+\infty}e^{-ax}\cdot\sin x\mathrm{d}x\\ &=-\frac{1}{a^2}+\frac{1}{a^2}(-T)\\ \Rightarrow \frac{\partial I}{\partial a}=T&=-\frac{1}{a^2+1} \end{aligned} T=aIaI=T=0+eaxsinxdx=a10+sinxdeax=a1sinxeax0a10+eaxcosxdx=a10+eaxcosxdx=a210+cosxdeax=a210+cosxeax0a210+eax(sinx)dx=a21+a210+eaxsinxdx=a21+a21(T)=a2+11

∴ S = I ( 0 ) − I ( + ∞ ) = ∫ + ∞ 0 ∂ I ∂ a d a = ∫ + ∞ 0 − 1 a 2 + 1 d a = − arctan ⁡ a ∣ + ∞ 0 = π 2 \begin{aligned} \therefore S&=I(0)-I(+\infty)\\ &=\int_{+\infty}^{0}\frac{\partial I}{\partial a}\mathrm{d}a\\ &=\int_{+\infty}^{0}-\frac{1}{a^2+1}\mathrm{d}a\\ &=-\arctan a|_{+\infty}^{0}\\ &=\frac{\pi}{2} \end{aligned} S=I(0)I(+)=+0aIda=+0a2+11da=arctana+0=2π

  • 5
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 费曼学习法是一种高效的学习方法,它强调将学习内容通过输出来加深理解和记忆。学习者首先将所学知识以自己的方式解释出来,并以教授他人的态度去表达,从而深入理解并巩固所学的知识。 这种方法有助于发现知识的漏洞和不足之处。当我们试图将所学内容用简洁明了的语言表达给他人时,我们会发现自己对知识的理解可能还不够深刻。因此,我们会被迫回到输入环节,重新学习和理解相关的知识点,以更好地表达并解释清楚。通过这个过程,我们可以发现自己对知识的理解有哪些不足之处,并修正和完善。 费曼学习法通过输出倒逼输入,使我们在学习的过程中保持主动,不断追求更深入的理解。这种学习方式不仅有助于加深记忆,还能帮助我们形成更系统和全面的知识结构。通过将知识进行输出,我们可以更好地检验自己对知识的理解程度,并在不断修正中提高自己的学习效果。 总而言之,费曼学习法通过输出倒逼输入,促使学习者更深入地理解和掌握所学的知识。它不仅提升了学习效果,还培养了我们的表达能力和思维逻辑。这种学习方法可以应用于各个领域,帮助我们更好地学习和成长。 ### 回答2: 费曼学习法是一种学习方法,其基础理念是通过将所学知识以自己的方式加以“输出”,来倒逼自己的“输入”过程。具体而言,费曼学习法的步骤如下: 第一步是选择一个特定的主题或概念进行学习。这可能是一个你感兴趣的课程、一本书或一个研究领域。 第二步,将你所学的知识用自己的话重新表达出来。这可以通过简单地用纸和笔写下来的方式进行,也可以口头表达给他人听。这一步是整个方法的核心,帮助你加深对知识的理解。 第三步,检查你的表达是否准确。这可以通过查阅教科书、参考资料或与他人讨论来完成。通过找出自己的表达中不准确或含糊的地方,你可以明确知识中的弱点和需要进一步学习的领域。 第四步,重新整理你的表达。根据你的学习成果和所获取的反馈,重新调整你的表达方式,使其更加准确和完整。 费曼学习法的独特之处在于强调“输出”而非“输入”的重要性。通过将知识以自己的方式表达出来,我们不仅加深了对知识的理解,还能够更好地发现和纠正自己的知识盲点。同时,这种输出也可以作为对自己学习成果的检验和总结,有助于我们更好地掌握所学知识。 在实践费曼学习法的过程中,我们可以使用PDF文件作为输出的一种形式。通过将学习内容整理成PDF文档,我们可以更方便地进行记录和分享。此外,PDF格式的文档具有易读易传播的特点,可以更好地达到输出知识的目的。 总之,费曼学习法以输出倒逼输入的方式,帮助我们更好地理解和掌握所学知识。无论是以PDF文件形式还是其他方式的输出,都能够提高学习效果,加深对知识的理解。 ### 回答3: 费曼学习法是一种高效学习方法,其核心是通过将知识进行输出,从而倒逼自己对知识的深度理解和内化。这种方法可以应用于各种学习任务中,包括阅读材料、听课、解决问题等。 费曼学习法的步骤如下:首先,通过阅读或听课等方式获取知识输入,了解学习的主要内容。然后,将所学的知识以自己的语言写成笔记或教材,将其输出成为一个“费曼教程”。在编写费曼教程时,要用简单的语言解释复杂的概念,使其易于理解。接下来,根据自己对知识的理解程度,进行反思和回顾。通过讲解、演示、思考等方式,整理出不懂或不熟悉的部分,并梳理出重点和难点。最后,根据反馈的内容,进行输入和再次学习,直到对知识有深入的理解。 费曼学习法的核心思想是通过将知识输出,来检验自己的掌握程度。通过输出的过程,我们不仅能发现自己对知识的理解程度,还能发现知识中的漏洞和不足之处。这样一来,我们就能够有针对性地进行学习,填补知识的空白或深化对知识的理解。 输出倒逼输入的过程中,我们需要不断提高自己的表达和理解能力。通过把知识输出成教程的方式,我们需要将复杂的概念转化为简单易懂的语言,从而更好地理解和记忆知识。同时,通过与他人交流和分享自己的输出,我们还能够接受他人的反馈和指导,加深对知识的理解。 总之,费曼学习法通过输出倒逼输入,在知识学习上起到了指导和加强作用。通过不断输出和反思,我们能够更好地理解和掌握知识,提高学习效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值