luogu P1891 疯狂LCM

背景:

推了好久的式子,发现一开始错了。

题目传送门:

https://www.luogu.org/problem/P1891


∑ i = 1 n lcm ( i , n ) \sum_{i=1}^{n}\text{lcm}(i,n) i=1nlcm(i,n)

= ∑ i = 1 n n ⋅ i gcd ⁡ ( i , n ) =\sum_{i=1}^{n}\frac{n\cdot i}{\gcd(i,n)} =i=1ngcd(i,n)ni

= n ∑ k = 1 n ∑ i = 1 n i k [ gcd ⁡ ( i , n ) = k ] =n\sum_{k=1}^{n}\sum_{i=1}^{n}\frac{i}{k}[\gcd(i,n)=k] =nk=1ni=1nki[gcd(i,n)=k]

显然有 k ∣ n k|n kn,所以:
= n ∑ k ∣ n ∑ i = 1 n i k [ gcd ⁡ ( i , n ) = k ] =n\sum_{k|n}\sum_{i=1}^{n}\frac{i}{k}[\gcd(i,n)=k] =nkni=1nki[gcd(i,n)=k]

= n ∑ k ∣ n ∑ i = 1 n k i k [ gcd ⁡ ( i k , n k ) = 1 ] =n\sum_{k|n}\sum_{i=1}^{\frac{n}{k}}\frac{i}{k}[\gcd(\frac{i}{k},\frac{n}{k})=1] =nkni=1knki[gcd(ki,kn)=1]

= n ∑ k ∣ n ∑ i = 1 k i [ gcd ⁡ ( i , n k ) = 1 ] =n\sum_{k|n}\sum_{i=1}^{k}i[\gcd(i,\frac{n}{k})=1] =nkni=1ki[gcd(i,kn)=1]

d = n k d=\frac{n}{k} d=kn,有:
= n ∑ d ∣ n ∑ i = 1 d i [ gcd ⁡ ( i , n ) = 1 ] =n\sum_{d|n}\sum_{i=1}^{d}i[\gcd(i,n)=1] =ndni=1di[gcd(i,n)=1]

考虑 ∑ i = 1 d i [ gcd ⁡ ( i , n ) = 1 ] = d ⋅ ϕ d 2 \sum_{i=1}^{d}i[\gcd(i,n)=1]=\frac{d\cdot\phi_d}2{} i=1di[gcd(i,n)=1]=2dϕd Θ ( n log ⁡ n ) \Theta(n\log n) Θ(nlogn)预处理即可。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
	int n;
	int prime[1000010],phi[1000010];
	LL ans[1000010];
void init(int ma)
{
	int t=0;
	phi[1]=1;
	for(int i=2;i<=ma;i++)
	{
		if(!phi[i]) prime[++t]=i,phi[i]=i-1;
		for(int j=1;j<=t&&i*prime[j]<=ma;j++)
		{
			if(!(i%prime[j]))
			{
				phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}
			phi[i*prime[j]]=phi[i]*phi[prime[j]];
		}
	}
	for(int i=1;i<=ma;i++)
		for(int j=1;i*j<=ma;j++)
			ans[i*j]+=(((LL)phi[j]*j+1)>>1);
}
int main()
{
	int T;
	init(1000000);
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d",&n);
		printf("%lld\n",ans[n]*n);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值