luogu P4449 于神之怒加强版

背景:

又是一道水题。

题目传送门:

https://www.luogu.org/problem/P4449

题意:

∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) k \sum_{i=1}^{n}\sum_{j=1}^{m}\gcd(i,j)^k i=1nj=1mgcd(i,j)k

思路:

∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) k \sum_{i=1}^{n}\sum_{j=1}^{m}\gcd(i,j)^k i=1nj=1mgcd(i,j)k

= ∑ d = 1 min ⁡ ( n , m ) ∑ i = 1 n ∑ j = 1 m d k [ gcd ⁡ ( i , j ) = d ] =\sum_{d=1}^{\min(n,m)}\sum_{i=1}^{n}\sum_{j=1}^{m}d^k[\gcd(i,j)=d] =d=1min(n,m)i=1nj=1mdk[gcd(i,j)=d]

= ∑ d = 1 min ⁡ ( n , m ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ d k [ gcd ⁡ ( i , j ) = 1 ] =\sum_{d=1}^{\min(n,m)}\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{d}\rfloor}d^k[\gcd(i,j)=1] =d=1min(n,m)i=1dnj=1dmdk[gcd(i,j)=1]

= ∑ d = 1 min ⁡ ( n , m ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ d k ∑ t ∣ gcd ⁡ ( i , j ) μ ( t ) =\sum_{d=1}^{\min(n,m)}\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{d}\rfloor}d^k\sum_{t|\gcd(i,j)}\mu(t) =d=1min(n,m)i=1dnj=1dmdktgcd(i,j)μ(t)

= ∑ d = 1 min ⁡ ( n , m ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ d k ∑ t = 1 min ⁡ ( ⌊ n d ⌋ ⌊ m d ⌋ ) μ ( t ) [ t ∣ gcd ⁡ ( i , j ) ] =\sum_{d=1}^{\min(n,m)}\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{d}\rfloor}d^k\sum_{t=1}^{\min(\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor)}\mu(t)[t|\gcd(i,j)] =d=1min(n,m)i=1dnj=1dmdkt=1min(dndm)μ(t)[tgcd(i,j)]

= ∑ d = 1 min ⁡ ( n , m ) ∑ t = 1 min ⁡ ( ⌊ n d ⌋ ⌊ m d ⌋ ) μ ( t ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ d k [ t ∣ gcd ⁡ ( i , j ) ] =\sum_{d=1}^{\min(n,m)}\sum_{t=1}^{\min(\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor)}\mu(t)\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{d}\rfloor}d^k[t|\gcd(i,j)] =d=1min(n,m)t=1min(dndm)μ(t)i=1dnj=1dmdk[tgcd(i,j)]

= ∑ d = 1 min ⁡ ( n , m ) ∑ t = 1 min ⁡ ( ⌊ n d ⌋ ⌊ m d ⌋ ) μ ( t ) ∑ i = 1 ⌊ n d t ⌋ ∑ j = 1 ⌊ m d t ⌋ d k =\sum_{d=1}^{\min(n,m)}\sum_{t=1}^{\min(\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor)}\mu(t)\sum_{i=1}^{\lfloor \frac{n}{dt}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{dt}\rfloor}d^k =d=1min(n,m)t=1min(dndm)μ(t)i=1dtnj=1dtmdk

T = d t T=dt T=dt,则有:

= ∑ T = 1 min ⁡ ( n , m ) ∑ t ∣ T μ ( t ) ∑ i = 1 ⌊ n T ⌋ ∑ j = 1 ⌊ m T ⌋ ( T t ) k =\sum_{T=1}^{\min(n,m)}\sum_{t|T}\mu(t)\sum_{i=1}^{\lfloor \frac{n}{T}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{T}\rfloor}(\frac{T}{t})^k =T=1min(n,m)tTμ(t)i=1Tnj=1Tm(tT)k

= ∑ T = 1 min ⁡ ( n , m ) ∑ t ∣ T μ ( t ) ⌊ n T ⌋ ⌊ m T ⌋ ( T t ) k =\sum_{T=1}^{\min(n,m)}\sum_{t|T}\mu(t)\lfloor \frac{n}{T}\rfloor\lfloor \frac{m}{T}\rfloor (\frac{T}{t})^k =T=1min(n,m)tTμ(t)TnTm(tT)k

= ∑ T = 1 min ⁡ ( n , m ) ⌊ n T ⌋ ⌊ m T ⌋ ∑ t ∣ T μ ( t ) ( T t ) k =\sum_{T=1}^{\min(n,m)}\lfloor \frac{n}{T}\rfloor\lfloor \frac{m}{T}\rfloor \sum_{t|T}\mu(t)(\frac{T}{t})^k =T=1min(n,m)TnTmtTμ(t)(tT)k

类似埃氏筛预处理后面的 ∑ \sum 里的,直接整除分块即可。
卡常,你可以线性筛 k k k的次方,判断 μ \mu μ的值来判断是否进入第二重循环,具体看代码。
我不会告诉你正解是线性筛预处理后面的 ∑ \sum

代码:

#pragma GCC optimize("Ofast")
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 1000000007
#define LL long long
#define R register
#define I inline
using namespace std;
	int n,k;
	int prime[5000010],mu[5000010],f[5000010],sum_f[5000010],Pow[5000010];
	bool bz[5000010];
I int ksm(int x,int k)
{
	int tot=1;
	for(;k;k>>=1)
	{
		if(k&1) tot=(LL)tot*x%mod;
		x=(LL)x*x%mod;
	}
	return tot;
}
I void init(int ma)
{
	int t=0;
	mu[1]=1;
	bz[0]=bz[1]=true;
	Pow[0]=1,Pow[1]=1;
	for(R int i=2;i<=ma;i++)
	{
		if(!bz[i]) prime[++t]=i,mu[i]=-1,Pow[i]=ksm(i,k);
		for(R int j=1;j<=t&&i*prime[j]<=ma;j++)
		{
			bz[i*prime[j]]=true;
			Pow[i*prime[j]]=(LL)Pow[i]*Pow[prime[j]]%mod;
			if(!(i%prime[j]))
			{
				mu[i*prime[j]]=0;
				break;
			}
			mu[i*prime[j]]=-mu[i];
		}
	}
	for(R int i=1;i<=ma;i++)
	{
		if(!mu[i]) continue;
		for(R int j=i;j<=ma;j+=i)
			f[j]=((LL)f[j]+mu[i]*Pow[j/i]+mod)%mod;
	}
	for(R int i=1;i<=ma;i++)
		sum_f[i]=(sum_f[i-1]+f[i])%mod;
}
I int work(int n,int m)
{
	int sum=0;
	for(R int l=1,r;l<=min(n,m);l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		sum=((LL)sum+((LL)n/l)*((LL)m/l)%mod*((sum_f[r]-sum_f[l-1]+mod)%mod)%mod)%mod;
	}
	return sum;
}
int main()
{
	int T;
	int n,m;
	scanf("%d %d",&T,&k);
	init(5000000);
	while(T--)
	{
		scanf("%d %d",&n,&m);
		printf("%d\n",work(n,m));
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值