luogu P1613 跑路

题目传送门:https://www.luogu.org/problemnew/show/P1613



题意:

有n个点,m条边,每条边权为1个单位,每秒走1个单位,每走2的幂次方各单位需要1秒,求最短用时。



思路:

既然题目说是倍增,就说这种方法叫倍增(尽管我个人认为这不叫倍增)吧。

贪心地,我们可以知道尽量走2的幂次方的边,如1,2,4,8……用时为1。倍增思想可以知道(尽管我认为这是数学思想),每两个相同的2的幂次方数为1个2的幂次方数,如2+2=2^2,4+4=2^3。所以,对于三个点,两条边连接,如果这两条边边权为两个相等的2的幂次方数,那么,走过这两条边的时间为1,所以,我们可以从这两条边的起点向终点连一条边权(时间)为1的边。最后,跑一边最短路即可。



代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
	int n,m;
	int f[100][100];//f[i][j]表示点i到点j之间的最短路(时间) 
	bool bz[100][100][100];//f[i][j][p]表示从点i到点j之间有一条边权为2^p的边 
int main()
{
	int x,y;
	scanf("%d %d",&n,&m);
	memset(f,63,sizeof(f));
	for(int i=1;i<=m;i++)
	{
		scanf("%d %d",&x,&y);
		f[x][y]=1;
		bz[x][y][0]=true;
	}
	for(int p=1;p<=32;p++)
		for(int k=1;k<=n;k++)
			for(int i=1;i<=n;i++)
				for(int j=1;j<=n;j++)
					if(bz[i][k][p-1]&&bz[k][j][p-1]) bz[i][j][p]=true,f[i][j]=1;

	for(int k=1;k<=n;k++)
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
				f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
	printf("%d",f[1][n]);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值