题目传送门:https://www.luogu.org/problemnew/show/P1314
题意:
有n件商品,每一件商品都有对应的重量wi和价值vi。现在有m个区间,你需要找到一个W,使得每个区间的价值的和Y最接近S(即|S-Y|最小,|x|表示x的绝对值)
每个区间的价值和计算公式如下
思路:
一看数据范围,就想到二分(因为不会什么算法),可是这有单调性吗?
开始分析题目:随着W的增大,所选的矿石的数量是不上升的(大部分情况还是近似下降的),所以对应的Y值也是不上升的(大部分情况还是近似下降的)。
所以我们得到:
当Y>S 时,需要增大W来减小Y,从而使|Y-S|变小;
当Y=S时,|S-Y|=0;
当Y<S时,需要减小W来增大Y,从而使|Y-S|变大。
所以就可以二分了。
注意再加上前缀和优化一下就可以了(这都是套路)。
代码:
#include<cstdio>
#include<algorithm>
#define LL long long
using namespace std;
LL s,ans=(LL)1e13;
int n,m;
int w[200010],v[200010],a[200010],b[200010];
LL sum1[200010],sum2[200010];
LL check(int x)
{
LL tot=0;
sum1[0]=sum2[0]=0;
for(int i=1;i<=n;i++)
sum1[i]=sum1[i-1]+(w[i]>=x),sum2[i]=sum2[i-1]+(w[i]>=x?v[i]:0);
for(int i=1;i<=m;i++)
tot+=(sum1[b[i]]-sum1[a[i]-1])*(sum2[b[i]]-sum2[a[i]-1]);
return tot;
}
int main()
{
int l=2147483647,r=0,mid;
scanf("%d %d %lld",&n,&m,&s);
for(int i=1;i<=n;i++)
{
scanf("%d %d",&w[i],&v[i]);
l=min(l,w[i]);
r=max(r,w[i]);
}
for(int i=1;i<=m;i++)
scanf("%d %d",&a[i],&b[i]);
while(l<=r)
{
mid=(l+r)>>1;
LL p=check(mid);
if(p>s) l=mid+1; else r=mid-1;
ans=min(abs(p-s),ans);
}
printf("%lld",ans);
}