luogu P1197 [JSOI2008]星球大战

题目传送门:https://www.luogu.org/problemnew/show/P1197



题意:

有n个点,m条边,现在有q个操作,每次都会删掉一个点,求每次删完点后还有多少个联通块。



思路:

反向并查集(一眼看出,这都是这种题的套路)

我们先将要删掉的点都删掉,看看有多少个联通分块剩下(设有x个),剩下的联通分块就为经过打击后的联通分块的个数。

设ans[i]表示经过第i个操作后剩下的联通分块的个数,则ans[q+1]=x。

我们就反向建点建边,遇到一个被删掉的点,就将它所连出的边加紧同一个联通分块,不断更新结果即可。

套路题,没什么好讲的。



代码:

#include<cstdio>
	int n,m,q,len=0;
	int last[400010],p[400010],fa[400010],ans[400010];
	struct node{int x,y,next;} a[1000010];
	bool bz[400010];
void ins(int x,int y)
{
	a[++len].x=x;a[len].y=y;a[len].next=last[x];last[x]=len;
}
int find(int x)
{
	return x==fa[x]?x:fa[x]=find(fa[x]);
}
int main()
{
	int x,y;
	scanf("%d %d",&n,&m);
	for(int i=0;i<=n;i++)
		last[i]=-1,fa[i]=i;
	for(int i=1;i<=m;i++)
	{
		scanf("%d %d",&x,&y);	
		ins(x,y),ins(y,x);
	}
	scanf("%d",&q);
	for(int i=1;i<=q;i++)
	{
		scanf("%d",&p[i]);
		bz[p[i]]=true;
	}
	int tot=n-q;
	for(int i=1;i<=m<<1;i++)
	{
		int x=a[i].x,y=a[i].y,t1=find(x),t2=find(y);
		if(!bz[x]&&!bz[y]&&t1!=t2)
		{
			tot--;
			fa[t1]=t2;	
		}
	}
	ans[q+1]=tot;
	for(int k=q;k>=1;k--)
	{
		int x=p[k];
		bz[x]=false;
		tot++;
		for(int i=last[x];i!=-1;i=a[i].next)
		{
			int t1=find(x),y=a[i].y,t2=find(y);
			if(!bz[y]&&t1!=t2)
			{
				tot--;
				fa[t1]=t2;
			}
		}
		ans[k]=tot;
	}
	for(int i=1;i<=q+1;i++)
		printf("%d\n",ans[i]);
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页