题目传送门:https://www.luogu.org/problemnew/show/P2085
题意:
有n个函数F1,F2,F3,……,Fn(Fi(x)=Ai*x^2+Bi*x+Ci (x∈n)),求其中最小的m个。
思路:
开一个小根堆,因为这个x是我们自己枚举的,所以开一个f[i]表示对于第i个函数,我们的x取到了多少。
然后我们可以将x=1的所有情况推进堆中,每次取出堆顶,因为堆顶有且仅属于一个函数,那么我们对应的f[i]++即可(因为x的值可以取更大)。
这种一出一近的操作使得堆内始终保持n个元素,所以时间复杂度为O(mlogn)。
代码:
#include<cstdio>
#include<queue>
using namespace std;
struct node
{
int id,date;
friend bool operator<(const node &x,const node &y)
{
return x.date>y.date;
}
};
priority_queue<node>a;
using namespace std;
int p[20000][5],f[20000];
int n,m;
int Function(int x,int y)
{
return p[x][1]*y*y+p[x][2]*y+p[x][3];
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d %d %d",&p[i][1],&p[i][2],&p[i][3]);
a.push((node){i,Function(i,1)});
f[i]=1;
}
for(int i=1;i<=m;i++)
{
node now=a.top();
a.pop();
printf("%d ",now.date);
a.push((node){now.id,Function(now.id,++f[now.id])});
}
}