背景:
继续肝…
肝完这题差分约束也就告一段落了。
题目传送门:
https://www.luogu.org/problemnew/show/P3530
题意:
垃圾翻译。
有两种约束条件(每种有多个),对于每一个约束条件给出两个位置
x
,
y
x,y
x,y,使得
x
x
x位置和
y
y
y位置上的值满足所对应的约束条件。现在你需要构造一个满足所有约束条件的序列(值域为
[
1
,
n
]
[1,n]
[1,n]),使序列中不同元素的个数的尽可能大,求这个最大值。
思路:
显然是差分约束。
对于题目给的
x
+
1
=
y
x+1=y
x+1=y,我们可以得到不等式:
x
+
1
≤
y
≤
x
+
1
x+1≤y≤x+1
x+1≤y≤x+1
拆成两个式子
x
+
1
≤
y
,
y
≤
x
+
1
x+1≤y\ \ \ \ \ \ \ ,\ \ \ \ \ \ \ y≤x+1
x+1≤y , y≤x+1
分别来看:
x
+
1
≤
y
x+1≤y
x+1≤y可以得到
x
<
=
y
−
1
x<=y-1
x<=y−1,即为
i
n
s
(
y
,
x
,
−
1
)
ins(y,x,-1)
ins(y,x,−1);
y
≤
x
+
1
y≤x+1
y≤x+1,即为
i
n
s
(
x
,
y
,
1
)
。
ins(x,y,1)。
ins(x,y,1)。
至于另一个 x ≤ y x≤y x≤y,同理 i n s ( y , x , 0 ) ins(y,x,0) ins(y,x,0)。
最后再缩点后跑最短路,在强联通分量中取最大值+1,统计答案。
具体证明看:
P
o
P
o
Q
Q
Q
PoPoQQQ
PoPoQQQ大佬的证明。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define _ 300010
using namespace std;
int n,m1,m2,len=0,ans=0;
int dis[610][610];
int last[_],belong[_],low[_],dfn[_],sta[_],ma[_];
bool insta[_];
struct node{int x,y,next;} a[_];
void ins(int x,int y)
{
a[++len]=(node){x,y,last[x]}; last[x]=len;
}
int id=0,tp=0,cnt=0;
void tarjan(int x)
{
low[x]=dfn[x]=++id;
sta[++tp]=x;
insta[x]=true;
for(int i=last[x];i;i=a[i].next)
{
int y=a[i].y;
if(dfn[y]==-1)
{
tarjan(y);
if(low[x]>low[y]) low[x]=low[y];
}
else if(insta[y]&&low[x]>dfn[y]) low[x]=dfn[y];
}
if(low[x]==dfn[x])
{
int i;
cnt++;
do{
i=sta[tp--];
insta[i]=false;
belong[i]=cnt;
}while(i!=x);
}
}
void work()
{
memset(dfn,-1,sizeof(dfn));
memset(insta,false,sizeof(insta));
for(int i=1;i<=n;i++)
if(dfn[i]==-1) tarjan(i);
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
if(belong[i]==belong[k])
for(int j=1;j<=n;j++)
if(belong[i]==belong[j]&&belong[j]==belong[k])
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
for(int i=1;i<=n;i++)
if(dis[i][i]) {printf("NIE");return;}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(belong[i]==belong[j]) ma[belong[i]]=max(ma[belong[i]],abs(dis[i][j]));
for(int i=1;i<=cnt;i++)
ans+=ma[i]+1;
printf("%d",ans);
}
int main()
{
int x,y;
scanf("%d %d %d",&n,&m1,&m2);
memset(dis,63,sizeof(dis));
for(int i=1;i<=n;i++)
dis[i][i]=0;
for(int i=1;i<=m1;i++)
{
scanf("%d %d",&x,&y);
ins(x,y),ins(y,x);
dis[x][y]=min(dis[x][y],1);
dis[y][x]=min(dis[y][x],-1);
}
for(int i=1;i<=m2;i++)
{
scanf("%d %d",&x,&y);
ins(y,x);
dis[y][x]=min(dis[y][x],0);
}
work();
}