背景:
其实学会有一段时间了,但是没有怎么做题。
之前还有一些坑,看时间再补 (恐怕补不上了) 。
题目传送门:
https://www.luogu.org/problemnew/show/P4799
题意:
给定
n
n
n场比赛以及当前的钱数
m
m
m,每一场比赛现在求你能看到比赛的情况方案数。
思路:
你发现
n
≤
40
n≤40
n≤40,因此你不能直接爆搜。
考虑
n
2
≤
20
\frac{n}{2}≤20
2n≤20,而
2
20
=
1048576
2^{20}=1048576
220=1048576因此这是一个可以接受的时间复杂度。因此我们将这个东西分成两部分来算贡献。就是将
1
−
n
2
1-\frac{n}{2}
1−2n和
n
2
+
1
−
20
\frac{n}{2}+1-20
2n+1−20分开
d
f
s
dfs
dfs即可。
最后,你用一个排序将其算出的贡献二分统计出来,就
O
K
OK
OK了。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
int n,t[2];
LL m,ans=0;
LL d[50];
LL tot[2][1<<25];
void dfs(int id,int l,int r,LL sum)
{
if(sum>m) return;
if(l>r)
{
tot[id][++t[id]]=sum;
return;
}
dfs(id,l+1,r,sum);
dfs(id,l+1,r,sum+d[l]);
}
int main()
{
scanf("%d %lld",&n,&m);
for(int i=1;i<=n;i++)
scanf("%lld",&d[i]);
dfs(0,1,(n>>1),0);
dfs(1,(n>>1)+1,n,0);
sort(tot[0]+1,tot[0]+1+t[0]);
sort(tot[1]+1,tot[1]+1+t[1]);
for(int i=1;i<=t[1];i++)
ans+=upper_bound(tot[0]+1,tot[0]+1+t[0],m-tot[1][i])-1-tot[0];
printf("%lld",ans);
}