luogu P5340 [TJOI2019]大中锋的游乐场

13 篇文章 0 订阅
2 篇文章 0 订阅

背景:

昨晚志愿签名,然而镇区的同学感受到了开车两小时,签名一分钟。

题目传送门:

https://www.luogu.org/problemnew/show/P5340

题意:

一个无向图,每一条边有一个长度,每一个点有一个值 ∈ [ − 1 , 1 ] ∈[-1,1] [1,1],现在你要找到一条最短路径,使中间走过的点的权值和在任意时刻都 ∈ [ − k , k ] ∈[-k,k] [k,k]

思路:

好像是最短路。
然而条件不好保证。
k ≤ 10 k≤10 k10,容易想到从这里突破。
分层图???
按照 [ − k , k ] [-k,k] [k,k]分层建图,每两层之间按照 [ − 1 , 0 ] [-1,0] [1,0]的需要连边即可。
悄悄告诉你:从 loj \text{loj} loj的数据来看, T = 1 T=1 T=1,多组数据是假的。

代码:

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
queue<int> f;
	int n,m,k,st,ed,len;
	bool bz[500010];
	int last[500010],op[500010],dis[500010];
	struct node1{int x,y,z,next;} a[3000010];
	struct node2{int x,y,z;} b[200010];
int calc(int x,int y)
{
	return (x-1)*n+y;
}
void ins(int x,int y,int z)
{
	a[++len]=(node1){x,y,z,last[x]}; last[x]=len;
}
int spfa(int st,int ed)
{
	int ans=2147483647;
	memset(bz,false,sizeof(bz));
	bz[st]=true;
	memset(dis,63,sizeof(dis));
	dis[st]=0;
	while(!f.empty()) f.pop();
	f.push(st);
	while(!f.empty())
	{
		int x=f.front();
		f.pop();
		for(int i=last[x];i;i=a[i].next)
		{
			int y=a[i].y;
			if(dis[x]+a[i].z<dis[y])
			{
				dis[y]=dis[x]+a[i].z;
				if(!bz[y]) bz[y]=true,f.push(y);
			}
		}
		bz[x]=false;
	}
	for(int i=1;i<=2*k+1;i++)
		ans=min(ans,dis[calc(i,ed)]);
	return ans>=(int)(1e9)?-1:ans;
}

int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d %d %d",&n,&m,&k);
		for(int i=1;i<=n;i++)
			scanf("%d",&op[i]);
		for(int i=1;i<=m;i++)
			scanf("%d %d %d",&b[i].x,&b[i].y,&b[i].z);
		len=0;
		memset(last,0,sizeof(last));
		for(int i=1;i<=2*k+1-1;i++)
			for(int j=1;j<=m;j++)
			{
				if(op[b[j].x]==2) ins(calc(i,b[j].y),calc(i+1,b[j].x),b[j].z);
				if(op[b[j].y]==2) ins(calc(i,b[j].x),calc(i+1,b[j].y),b[j].z);
				
				if(op[b[j].x]==1) ins(calc(i+1,b[j].y),calc(i,b[j].x),b[j].z);
				if(op[b[j].y]==1) ins(calc(i+1,b[j].x),calc(i,b[j].y),b[j].z);
			}
		scanf("%d %d",&st,&ed);
		printf("%d\n",spfa(op[st]==1?calc(k,st):calc(k+2,st),ed));
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值