loj #6024. XLkxc

背景:

bzoj \text{bzoj} bzoj权限题?
没事 loj \text{loj} loj有原题。

题目传送门:

https://loj.ac/problem/6024

题意:

求: ∑ i = 0 n ∑ j = 1 a + i ⋅ d ∑ l = 1 j l k m o d    p \sum_{i=0}^{n}\sum_{j=1}^{a+i\cdot d}\sum_{l=1}^{j}l^k \mod p i=0nj=1a+idl=1jlkmodp

思路:

做法很妙,实在想不到。
一般人会去化简式子,可是根本化不动,我太菜了。
巨佬们给的做法是:
f x = ∑ i = 1 x i k f_x=\sum_{i=1}^{x}i^k fx=i=1xik
我们发现 f x f_x fx是一个 k + 1 k+1 k+1次的多项式。
证明就是:
f x = ∑ i = 1 x i k = 1 k + 1 ∑ i = 1 k + 1 C k + 1 i ⋅ B k + 1 − i ⋅ ( x + 1 ) i = 1 k + 1 ∑ i = 1 k + 1 C k + 1 i ⋅ B k + 1 − i ⋅ ∑ j = 0 i C ( i j ) x j 1 i − j = 1 k + 1 ∑ i = 1 k + 1 C k + 1 i ⋅ B k + 1 − i ⋅ ∑ j = 0 i C ( i j ) x j \begin{aligned}f_x&=\sum_{i=1}^{x}i^k\\ &=\frac{1}{k+1}\sum_{i=1}^{k+1}C_{k+1}^{i}\cdot B_{k+1-i}\cdot (x+1)^i\\ &=\frac{1}{k+1}\sum_{i=1}^{k+1}C_{k+1}^{i}\cdot B_{k+1-i}\cdot \sum_{j=0}^{i}C(_{i}^{j})x^j1^{i-j}\\ &=\frac{1}{k+1}\sum_{i=1}^{k+1}C_{k+1}^{i}\cdot B_{k+1-i}\cdot \sum_{j=0}^{i}C(_{i}^{j})x^j\end{aligned} fx=i=1xik=k+11i=1k+1Ck+1iBk+1i(x+1)i=k+11i=1k+1Ck+1iBk+1ij=0iC(ij)xj1ij=k+11i=1k+1Ck+1iBk+1ij=0iC(ij)xj
其中 B B B是伯努利数。
j j j的上限是 i i i i i i的上限为 k + 1 k+1 k+1,故 x j x^j xj的最大次数为 k + 1 k+1 k+1,因此得证。

g x = ∑ i = 1 x f i g_x=\sum_{i=1}^{x}f_i gx=i=1xfi
我们发现 g g g是一个 k + 2 k+2 k+2次的多项式。
证明就是:
g x = ∑ i = 1 x ∑ j = 1 j j k = ∑ i = 1 x 1 k + 1 ∑ j = 1 k + 1 C k + 1 j ⋅ B k + 1 − j ⋅ ( i + 1 ) j = 1 k + 1 ∑ i = 1 x ∑ j = 1 k + 1 C k + 1 j ⋅ B k + 1 − j ⋅ ∑ l = 0 j C j l ⋅ i l ⋅ 1 j − l = 1 k + 1 ∑ i = 1 x ∑ j = 1 k + 1 C k + 1 j ⋅ B k + 1 − j ⋅ ∑ l = 0 j C j l ⋅ i l = 1 k + 1 ∑ j = 1 k + 1 C k + 1 j ⋅ B k + 1 − j ⋅ ∑ l = 0 j C j l ⋅ ∑ i = 1 x i l \begin{aligned}g_x&=\sum_{i=1}^{x}\sum_{j=1}^{j}j^k\\ &=\sum_{i=1}^{x}\frac{1}{k+1}\sum_{j=1}^{k+1}C_{k+1}^{j}\cdot B_{k+1-j}\cdot (i+1)^j\\ &=\frac{1}{k+1}\sum_{i=1}^{x}\sum_{j=1}^{k+1}C_{k+1}^{j}\cdot B_{k+1-j}\cdot \sum_{l=0}^{j}C_{j}^{l}\cdot i^l\cdot 1^{j-l}\\ &=\frac{1}{k+1}\sum_{i=1}^{x}\sum_{j=1}^{k+1}C_{k+1}^{j}\cdot B_{k+1-j}\cdot \sum_{l=0}^{j}C_{j}^{l}\cdot i^{l}\\ &=\frac{1}{k+1}\sum_{j=1}^{k+1}C_{k+1}^{j}\cdot B_{k+1-j}\cdot \sum_{l=0}^{j}C_{j}^{l}\cdot\sum_{i=1}^{x} i^{l}\end{aligned} gx=i=1xj=1jjk=i=1xk+11j=1k+1Ck+1jBk+1j(i+1)j=k+11i=1xj=1k+1Ck+1jBk+1jl=0jCjlil1jl=k+11i=1xj=1k+1Ck+1jBk+1jl=0jCjlil=k+11j=1k+1Ck+1jBk+1jl=0jCjli=1xil

上面我们已经证明了形如 ∑ i = 1 x i l \sum_{i=1}^{x} i^{l} i=1xil l + 1 l+1 l+1次方的, l l l的上限是 j j j j j j的上限是 k + 1 k+1 k+1,当 l = j = k + 1 l=j=k+1 l=j=k+1时,为 k + 2 k+2 k+2次方,得证。

h x = ∑ i = 1 x g a + i ⋅ d h_x=\sum_{i=1}^{x}g_{a+i\cdot d} hx=i=1xga+id
我们发现 g g g是一个 k + 3 k+3 k+3次的多项式。
证明就是:
在原来的基础上,再套一层即可。

剩下的按照次数拉格朗日插值即可。
时间复杂度好像有点大: Θ ( n 3 ) \Theta(n^3) Θ(n3)
其实可以 Θ ( n 2 ) \Theta(n^2) Θ(n2)(重心拉格朗日插值),当然我很懒,既然模板都没打,为什么要打呢。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define LD long double
#define mod 1234567891ll
using namespace std;
	int k;
	LL p,n,d;
	LL f[1010],g[1010],h[1010];
	struct node{LL x,y;} a[1010];
LL times(LL x,LL y)
{
	LD t=(LD)x*(LD)y-(LL)((LD)x*(LD)y/(LD)mod)*(LD)mod;
	LL tt=(LL)t;
	return tt>=0?tt%mod:(tt+mod)%mod;
}
LL dg(LL x,LL y)
{
	if(!y) return 1;
	LL op=dg(x,y>>1);
	if(y&1) return times(times(op,op),x); else return times(op,op);
}
LL inv(LL x)
{
	return dg(x,mod-2);
}
LL lagrange(LL x,int limit)
{
	LL sum=0;
	for(int i=0;i<=limit;i++)
	{
		LL op1=a[i].y,op2=1;
		for(int j=0;j<=limit;j++)
		{
			if(i==j) continue;
			op1=times(op1,(x-a[j].x+mod)%mod);
			op2=times(op2,(a[i].x-a[j].x+mod)%mod);
		}
		sum=(sum+times(op1,inv(op2)))%mod;
	}
	return sum;
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d %lld %lld %lld",&k,&p,&n,&d);
		for(int i=1;i<=k+3;i++)
			f[i]=(f[i-1]+dg(i,k))%mod;
		for(int i=1;i<=k+3;i++)
			g[i]=(g[i-1]+f[i])%mod;
		for(int i=0;i<=k+3;i++)
			a[i]=(node){(LL)i,g[i]};
		for(int i=0;i<=k+4;i++)
			h[i]=((!i?0:h[i-1])+lagrange((p+times(i,d))%mod,k+3))%mod;
		for(int i=0;i<=k+4;i++)
			a[i]=(node){(LL)i,h[i]};
		printf("%lld\n",lagrange(n,k+4));
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值