luogu P4841 城市规划

20 篇文章 0 订阅
7 篇文章 1 订阅

背景:

luogu \text{luogu} luogu推荐了这道水题,蒟蒻都能很快切。

题目传送门:

https://www.luogu.org/problem/P4841

题意:

n n n个点的无向连通图的个数。

思路:

这是 luogu P4233  \text{luogu P4233 } luogu P4233 射命丸文的笔记的弱化版。
考虑图的总数(不考虑是否连通) g n = 2 n ( n − 1 ) 2 g_n=2^{\frac{n(n-1)}{2}} gn=22n(n1) n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)条边,每一条边都可以选或不选。
f n f_n fn表示 n n n个点的无向连通图的个数。 i i i枚举连通的那一个连通块的大小,显然有:
g n = ∑ i = 1 n C n − 1 i − 1 f i g n − i g_n=\sum_{i=1}^{n}C_{n-1}^{i-1}f_{i}g_{n-i} gn=i=1nCn1i1figni

理解起来就是从剩下的 n − 1 n-1 n1个点选择 i − 1 i-1 i1个点连到这个连通块(这个连通块原来必然有一个点,一个点也是一个连通块);连通块的大小为 i i i的贡献是 f i f_i fi;剩下的 n − i n-i ni个点可以随便乱连,只要不连到选中的 i i i个点中,方案数为 g n − i g_{n-i} gni
化简一下,有:

g n = ∑ i = 1 n ( n − 1 ) ! ( i − 1 ) ! ( n − i ) ! f i g n − i g_n=\sum_{i=1}^{n}\frac{(n-1)!}{(i-1)!(n-i)!}f_ig_{n-i} gn=i=1n(i1)!(ni)!(n1)!figni

g n ( n − 1 ) ! = ∑ i = 1 n f i ( i − 1 ) ! g n − i ( n − i ) ! \frac{g_n}{(n-1)!}=\sum_{i=1}^{n}\frac{f_i}{(i-1)!}\frac{g_{n-i}}{(n-i)!} (n1)!gn=i=1n(i1)!fi(ni)!gni

F i = f i ( i − 1 ) ! , G i = g i i ! , H i = g i ( i − 1 ) ! F_i=\frac{f_i}{(i-1)!},G_i=\frac{g_{i}}{i!},H_i=\frac{g_{i}}{(i-1)!} Fi=(i1)!fi,Gi=i!gi,Hi=(i1)!gi
考虑生成函数的表示。
H = F G H=FG H=FG

F = H G F=\frac{H}{G} F=GH

多项式求逆即可。
最后 f i = F i ∗ ( i − 1 ) ! f_i=F_i*(i-1)! fi=Fi(i1)!,即可。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
const int mod=1004535809,G=3,inv_G=334845270;
using namespace std;
	int a[1000010],b[1000010],f[1000010],g[1000010],h[1000010],fac[1000010],Inv[1000010];
	int limit,n,l,r[1000010];
int dg(int x,LL k)
{
	if(!k) return 1;
	int op=dg(x,k>>1);
	if(k&1) return (LL)op*op%mod*x%mod; else return (LL)op*op%mod;
}
int inv(int x)
{
	return dg(x,mod-2);
}
void init(int n)
{
	limit=1,l=0;
	while(limit<(n<<1))
		limit<<=1,l++;
	for(int i=1;i<limit;i++)
		r[i]=((r[i>>1]>>1)|((i&1)<<(l-1)));
}
void NTT(int *now,int limit,int op)
{
	for(int i=0;i<limit;i++)
		if(i<r[i]) swap(now[i],now[r[i]]);
	for(int mid=1;mid<limit;mid<<=1)
	{
		int wn=dg(op==1?G:inv_G,(mod-1)/(mid<<1));
		for(int j=0;j<limit;j+=(mid<<1))
		{
			int w=1;
			for(int k=0;k<mid;k++,w=((LL)w*wn)%mod)
			{
				int x=now[j+k],y=(LL)w*now[j+k+mid]%mod;
				now[j+k]=(x+y)%mod;
				now[j+k+mid]=(x-y+mod)%mod;
			}
		}
	}
}
void dft(int *f,int n,int limit)
{
	NTT(f,limit,-1);
	int INV=inv(limit);
	for(int i=0;i<n;i++)
		f[i]=(LL)f[i]*INV%mod;
}
void poly_inv(int *f,int *g,int n)
{
	if(n==1)
	{
		g[0]=inv(f[0]);
		return;
	}
	poly_inv(f,g,(n+1)>>1);
	init(n);
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(int i=0;i<n;i++)
		a[i]=f[i],b[i]=g[i];
	NTT(a,limit,1),NTT(b,limit,1);
	for(int i=0;i<limit;i++)
		b[i]=(LL)b[i]*((2ll-(LL)a[i]*b[i]%mod+mod)%mod)%mod;
	dft(b,n,limit);
	for(int i=0;i<n;i++)
		g[i]=b[i];
}
void INIT(int n)
{
	fac[0]=fac[1]=1;
	Inv[0]=Inv[1]=1;
	for(int i=2;i<=n;i++)
	{
		fac[i]=(LL)fac[i-1]*i%mod;
		Inv[i]=((LL)mod-mod/i)*Inv[mod%i]%mod;
	}
	for(int i=1;i<=n;i++)
		Inv[i]=(LL)Inv[i-1]*Inv[i]%mod;
}
int main()
{
	scanf("%d",&n);
	INIT(n);
	g[0]=1;
	for(int i=1;i<=n;i++)
	{
		g[i]=(LL)dg(2,(LL)i*(i-1)/2)*Inv[i]%mod;
		h[i]=(LL)dg(2,(LL)i*(i-1)/2)*Inv[i-1]%mod;
	}
	poly_inv(g,f,n+1);
	init(n+1);
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(int i=0;i<=n;i++)
		a[i]=f[i],b[i]=h[i];
	NTT(a,limit,1),NTT(b,limit,1);
	for(int i=0;i<limit;i++)
		f[i]=(LL)a[i]*b[i]%mod;
	dft(f,n+1,limit);
	printf("%d",(LL)f[n]*fac[n-1]%mod);
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值