luogu P2791 幼儿园篮球题

背景:

律师函警告。
另外 yyb \text{yyb} yyb太巨了,解锁了新姿势。

题目传送门:

https://www.luogu.org/problem/P2791

题意:

N N N个球,其中 M M M个没气的;每一次 cxk’s fans \text{cxk's fans} cxk’s fans从中选出 n n n个球,其中 m m m个没气的;而 cxk \text{cxk} cxk每次会从这 n n n个球中选出 k k k个球,其中每一次没气的球的个数 x x x会产生 x k x^k xk的贡献,求最后的总期望。

思路:

考虑 a n s ans ans的表示, i i i枚举 cxk \text{cxk} cxk选出的没气的球,很容易有下面的式子,不解释了, cxk \text{cxk} cxk水平。
a n s = C M m C N − M n − m ∑ i = 0 k C m i C n − m k − i i L C M m C N − M n − m ans=\frac{C_{M}^{m}C_{N-M}^{n-m}\sum_{i=0}^{k}C_{m}^{i}C_{n-m}^{k-i}i^L}{C_{M}^{m}C_{N-M}^{n-m}} ans=CMmCNMnmCMmCNMnmi=0kCmiCnmkiiL

我们知道 i L = ∑ j = 0 L S L , j C i j j ! i^L=\sum_{j=0}^{L}S_{L,j}C_{i}^{j}j! iL=j=0LSL,jCijj!,带入可得:
a n s = ∑ i = 0 k C m i C n − m k − i ∑ j = 0 L S L , j C i j j ! ans=\sum_{i=0}^{k}C_{m}^{i}C_{n-m}^{k-i}\sum_{j=0}^{L}S_{L,j}C_{i}^{j}j! ans=i=0kCmiCnmkij=0LSL,jCijj!

a n s = ∑ i = 0 k C m i C n − m k − i ∑ j = 0 L S L , j C i j j ! j ! ans=\sum_{i=0}^{k}C_{m}^{i}C_{n-m}^{k-i}\sum_{j=0}^{L}S_{L,j}C_{i}^{j}j!j! ans=i=0kCmiCnmkij=0LSL,jCijj!j!

a n s = ∑ j = 0 L S L , j j ! ∑ i = 0 k C m i C n − m k − i C i j ans=\sum_{j=0}^{L}S_{L,j}j!\sum_{i=0}^{k}C_{m}^{i}C_{n-m}^{k-i}C_{i}^{j} ans=j=0LSL,jj!i=0kCmiCnmkiCij

搞到这里不会了啊,式子化简不出来,膜题解吧。
a n s = ∑ j = 0 L S L , j j ! ∑ i = 0 k m ! i ! ( m − i ) ! C n − m k − i i ! j ! ( i − j ) ! ans=\sum_{j=0}^{L}S_{L,j}j!\sum_{i=0}^{k}\frac{m!}{i!(m-i)!}C_{n-m}^{k-i}\frac{i!}{j!(i-j)!} ans=j=0LSL,jj!i=0ki!(mi)!m!Cnmkij!(ij)!i!

a n s = ∑ j = 0 L S L , j j ! ∑ i = 0 k m ! ( m − i ) ! 1 j ! ( i − j ) ! C n − m k − i ans=\sum_{j=0}^{L}S_{L,j}j!\sum_{i=0}^{k}\frac{m!}{(m-i)!}\frac{1}{j!(i-j)!}C_{n-m}^{k-i} ans=j=0LSL,jj!i=0k(mi)!m!j!(ij)!1Cnmki

a n s = ∑ j = 0 L S L , j j ! ∑ i = 0 k m ! ( m − i ) ! ( m − j ) ! ( m − j ) ! j ! ( i − j ) ! C n − m k − i ans=\sum_{j=0}^{L}S_{L,j}j!\sum_{i=0}^{k}\frac{m!}{(m-i)!(m-j)!}\frac{(m-j)!}{j!(i-j)!}C_{n-m}^{k-i} ans=j=0LSL,jj!i=0k(mi)!(mj)!m!j!(ij)!(mj)!Cnmki

a n s = ∑ j = 0 L S L , j j ! ∑ i = 0 k m ! j ! ( m − j ) ! ( m − j ) ! ( m − i ) ! ( i − j ) ! C n − m k − i ans=\sum_{j=0}^{L}S_{L,j}j!\sum_{i=0}^{k}\frac{m!}{j!(m-j)!}\frac{(m-j)!}{(m-i)!(i-j)!}C_{n-m}^{k-i} ans=j=0LSL,jj!i=0kj!(mj)!m!(mi)!(ij)!(mj)!Cnmki

a n s = ∑ j = 0 L S L , j j ! ∑ i = 0 k C m j C m − j i − j C n − m k − i ans=\sum_{j=0}^{L}S_{L,j}j!\sum_{i=0}^{k}C_{m}^{j}C_{m-j}^{i-j}C_{n-m}^{k-i} ans=j=0LSL,jj!i=0kCmjCmjijCnmki

a n s = ∑ j = 0 L S L , j m ! ( m − j ) ! ∑ i = 0 k C m − j i − j C n − m k − i ans=\sum_{j=0}^{L}S_{L,j}\frac{m!}{(m-j)!}\sum_{i=0}^{k}C_{m-j}^{i-j}C_{n-m}^{k-i} ans=j=0LSL,j(mj)!m!i=0kCmjijCnmki

考虑范德蒙恒等式 ∑ i = 0 k C m − j i − j C n − m k − i = C n − j k − j \sum_{i=0}^{k}C_{m-j}^{i-j}C_{n-m}^{k-i}=C_{n-j}^{k-j} i=0kCmjijCnmki=Cnjkj,有:
a n s = ∑ j = 0 L S L , j m ! ( m − j ) ! C n − j k − j ans=\sum_{j=0}^{L}S_{L,j}\frac{m!}{(m-j)!}C_{n-j}^{k-j} ans=j=0LSL,j(mj)!m!Cnjkj

a n s = ∑ j = 0 L S L , j m ! ( m − j ) ! ( n − j ) ! ( k − j ) ! ( n − k ) ! ans=\sum_{j=0}^{L}S_{L,j}\frac{m!}{(m-j)!}\frac{(n-j)!}{(k-j)!(n-k)!} ans=j=0LSL,j(mj)!m!(kj)!(nk)!(nj)!

a n s = m ! ( n − k ) ! ∑ j = 0 L S L , j 1 ( m − j ) ! ( n − j ) ! ( k − j ) ! ans=\frac{m!}{(n-k)!}\sum_{j=0}^{L}S_{L,j}\frac{1}{(m-j)!}\frac{(n-j)!}{(k-j)!} ans=(nk)!m!j=0LSL,j(mj)!1(kj)!(nj)!
预处理第二类斯特林数,就可以 Θ ( L ) \Theta(L) Θ(L)出解了。
总时间复杂度: Θ ( n + L log ⁡ L + S L ) \Theta(n+L\log L+SL) Θ(n+LlogL+SL),挺大的。
卡常警告。
[ 1 ] [1] [1] i L i^L iL可以用线性筛处理,避免快速幂的 log \text{log} log
[ 2 ] [2] [2]:不要用逆元的前缀积来算阶乘的逆元,选择先算出最大的阶乘的逆元,每一次再乘 i + 1 i+1 i+1推过去,快了好多。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define I inline
#define R register
#define mod 998244353
using namespace std;
	int r[600010],f[600010],g[600010],w[600010],prime[200010],Pow[200010],fac[20000010],Inv[20000010];
	int S,L,n,m,k,limit,l,ans;
I int ksm(int x,int k)
{
	int tot=1;
	for(;k;k>>=1)
	{
		if(k&1) tot=(LL)tot*x%mod;
		x=(LL)x*x%mod;
	}
	return tot;
}
I void NTT(int *now,int limit,int n,int op)
{
	for(R int i=0;i<limit;++i)
		if(i<r[i]) std::swap(now[i],now[r[i]]);
	for(R int mid=1;mid<limit;mid<<=1)
	{
		int wn=ksm(op==1?3:332748118,(mod-1)/(mid<<1));
		w[0]=1;
		for(R int k=1;k<mid;k++)
			w[k]=(LL)w[k-1]*wn%mod;
		for(R int j=0;j<limit;j+=(mid<<1))
			for(R int k=0;k<mid;++k)
			{
				int x=now[j+k],y=(LL)w[k]*now[j+k+mid]%mod;
				now[j+k]=(x+y)%mod;
				now[j+k+mid]=(x-y+mod)%mod;
			}
	}
	if(op==1) return;
	int INV=ksm(limit,mod-2);
	for(R int i=0;i<n;++i)
		f[i]=(LL)f[i]*INV%mod;
}
I void Init()
{
	int ma=std::max(n,L);
	fac[0]=fac[1]=Inv[0]=Inv[1]=1;
	for(R int i=2;i<=ma;++i)
		fac[i]=(LL)fac[i-1]*i%mod;
	Inv[ma]=ksm(fac[ma],mod-2);
	for(R int i=ma-1;i;i--)
		Inv[i]=(LL)Inv[i+1]*(i+1)%mod;
	
	int t=0;
	Pow[1]=1;
	for(R int i=2;i<=L;++i)
	{
		if(!Pow[i]) Pow[i]=ksm(i,L),prime[++t]=i;
		for(R int j=1;j<=t&&i*prime[j]<=L;++j)
		{
			Pow[i*prime[j]]=(LL)Pow[i]*Pow[prime[j]]%mod;
			if(!(i%prime[j])) break;
		}
	}
	
	for(R int i=0;i<=L;++i)
	{
		f[i]=(i&1)?mod-Inv[i]:Inv[i];
		g[i]=(LL)Pow[i]*Inv[i]%mod;
	}
	limit=1,l=0;
	++L;
	while(limit<(L<<1))
		limit<<=1,++l;
	for(R int i=1;i<limit;++i)
		r[i]=((r[i>>1]>>1)|((i&1)<<(l-1)));
	NTT(f,limit,L,1),NTT(g,limit,L,1);
	for(R int i=0;i<limit;++i)
		f[i]=(LL)f[i]*g[i]%mod;
	NTT(f,limit,L,-1);
	--L;
}
I int read()
{
	int x=0,f=1;
	char ch=getchar();
	for(;ch<'0'||ch>'9';ch=getchar());
	for(;ch>='0'&&ch<='9';x=(x<<3)+(x<<1)+(ch^48),ch=getchar());
	return x*f;
}
void print(int x)
{
	if(x>9) print(x/10);
	putchar(x%10+'0');
}
int main()
{
	int mi;
	n=read(),m=read(),S=read(),L=read();
	Init();
	for(R int j=1;j<=S;++j)
	{
		ans=0;
		n=read(),m=read(),k=read();
		mi=std::min(std::min(k,m),L);
		for(R int i=1;i<=mi;++i)
			ans=(ans+(LL)f[i]*Inv[m-i]%mod*fac[n-i]%mod*Inv[k-i]%mod)%mod;
		print((LL)fac[m]*fac[k]%mod*Inv[n]%mod*ans%mod),puts("");
	}
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值