Definition
Satisficing Measure [4]
Let
(
Ω
,
F
,
P
)
(\Omega,\mathcal{F},\mathbb{P})
(Ω,F,P) be a measure space and let
X
\mathcal{X}
X be a set of random variables on
Ω
\Omega
Ω, i.e., a set of functions
X
:
Ω
→
R
X:\Omega\rightarrow\mathbb{R}
X:Ω→R. Each
X
∈
X
X\in\mathcal{X}
X∈X represents the payoff (or return) of a different, risky position. Consider the situation in which the investor has an aspiration level
τ
\tau
τ, which she hopes to achieve via these positions. We assume
τ
\tau
τ a random variable on
Ω
\Omega
Ω as well. Given an uncertain payoff
X
∈
X
X\in\mathcal{X}
X∈X, we define the target premium
V
V
V to be
V
=
X
−
τ
∈
X
V=X-\tau\in\mathcal{X}
V=X−τ∈X.
Definition. A function ρ : X → [ 0 , ρ ˉ ] \rho:\mathcal{X}\rightarrow [0,\bar{\rho}] ρ:X→[0,ρˉ], where ρ ˉ ∈ [ 1 , ∞ ] \bar{\rho}\in[1,\infty] ρˉ∈[1,∞], is a satisficing measure defined on the target premium if it satisfies the following axioms for all X , Y ∈ X X,Y\in\mathcal{X} X,Y∈X:
- Attainment Content: If X ≥ 0 X\ge 0 X≥0, then ρ ( X ) = ρ ˉ \rho(X)=\bar{\rho} ρ(X)=ρˉ.
- Nonattainment apathy: If X < 0 X<0 X<0, then ρ ( X ) < 0 \rho(X)<0 ρ(X)<0.
- Monotonicity: If X ≥ Y X\ge Y X≥Y, then ρ ( X ) ≥ ρ ( Y ) \rho(X)\ge\rho(Y) ρ(X)≥ρ(Y).
- Gain Continuity: lim a ↓ 0 ρ ( X + a ) = ρ ( X ) \lim_{a\downarrow 0} \rho(X+a)=\rho(X) lima↓0ρ(X+a)=ρ(X)
Definition. A function
ρ
:
X
→
[
0
,
ρ
ˉ
]
\rho:\mathcal{X}\rightarrow [0,\bar{\rho}]
ρ:X→[0,ρˉ], where
ρ
ˉ
∈
[
1
,
∞
]
\bar{\rho}\in[1,\infty]
ρˉ∈[1,∞], is a quasiconcave satisficing measure (QSM) defined on the target premium if, in addition to the conditions of satisficing measure, it satisfies the following axioms for all
X
,
Y
∈
X
X,Y\in\mathcal{X}
X,Y∈X:
1… Quasiconcavity: If
λ
∈
[
0
,
1
]
\lambda\in[0,1]
λ∈[0,1],
ρ
(
λ
X
+
(
1
−
λ
)
Y
)
≥
min
{
ρ
(
X
)
,
ρ
(
Y
)
}
\rho(\lambda X+(1-\lambda)Y)\ge\min\{\rho(X),\rho(Y)\}
ρ(λX+(1−λ)Y)≥min{ρ(X),ρ(Y)}.
If in addition,
ρ
\rho
ρ satisfies the following condition, we say it a coherent satisficing measure (CSM)
2. Scale Invariance: If
k
>
0
k>0
k>0, then
ρ
(
k
X
)
=
ρ
(
X
)
\rho(kX)=\rho(X)
ρ(kX)=ρ(X).
Risk Measure [4]
Definition. A function
μ
:
X
→
R
\mu:\mathcal{X}\rightarrow\mathbb{R}
μ:X→R is a risk measure if it satisfies the following for all
X
,
Y
∈
X
X,Y\in\mathcal{X}
X,Y∈X:
- Monotonicity: If X ≥ Y X\ge Y X≥Y, then μ ( X ) ≤ μ ( Y ) \mu(X)\leq\mu(Y) μ(X)≤μ(Y).
- Translation invariance: For any a ∈ R a\in\mathbb{R} a∈R, μ ( X + a ) = μ ( X ) + a \mu(X+a)=\mu(X)+a μ(X+a)=μ(X)+a.
Definition. A function μ : X → R \mu:\mathcal{X}\rightarrow\mathbb{R} μ:X→R is a convex risk measure if, in addition to the conditions of risk measure, it satisfies the following for all X , Y ∈ X X,Y\in\mathcal{X} X,Y∈X:
- Convexity: For any
λ
∈
[
0
,
1
]
\lambda\in[0,1]
λ∈[0,1],
μ
(
λ
X
+
(
1
−
λ
)
Y
)
≤
λ
μ
(
X
)
+
(
1
−
λ
)
μ
(
Y
)
\mu(\lambda X+(1-\lambda)Y)\leq \lambda\mu(X)+(1-\lambda)\mu(Y)
μ(λX+(1−λ)Y)≤λμ(X)+(1−λ)μ(Y).
If in addition, μ \mu μ satisfies the following condition, we say it a coherent risk measure : - Positive Homogeneity: If λ ≥ 0 \lambda\ge 0 λ≥0, then μ ( λ X ) = λ μ ( X ) \mu(\lambda X)=\lambda\mu(X) μ(λX)=λμ(X).
It is well known that every coherent risk measure may be written in the form μ ( X ) = sup Q ∈ Q E Q ( − X ) \mu(X)=\mathop{\sup}\limits_{\mathbb{Q}\in\mathcal{Q}}\mathbb{E}_{\mathbb{Q}}(-X) μ(X)=Q∈QsupEQ(−X) for a family of generating measures Q \mathcal{Q} Q.
Riskiness Index [3]
Definition. Given a random delay denoted by the random variables
ξ
~
∈
V
\tilde{\xi}\in\mathcal{V}
ξ~∈V with probability distribution
P
\mathbb{P}
P, the riskness index
ρ
R
:
V
→
R
\rho_R:\mathcal{V}\rightarrow\mathbb{R}
ρR:V→R is defined as
ρ
R
(
ξ
~
)
=
inf
{
α
>
0
∣
C
α
(
ξ
~
)
≤
0
}
\rho_R(\tilde{\xi})=\inf\left\{\alpha>0 \Big | C_{\alpha}(\tilde{\xi})\leq 0 \right\}
ρR(ξ~)=inf{α>0∣∣∣Cα(ξ~)≤0}
where
α
>
0
\alpha >0
α>0 and
C
α
(
ξ
~
)
C_{\alpha}(\tilde{\xi})
Cα(ξ~) is the certainty equivalent of the
ξ
~
\tilde{\xi}
ξ~ under exponential disutility given by
C
α
(
ξ
~
)
=
α
ln
E
P
(
exp
(
ξ
~
α
)
)
.
C_{\alpha}(\tilde{\xi})=\alpha \ln \mathbb{E}_{\mathbb{P}} \left( \exp\left(\frac{\tilde{\xi}}{\alpha}\right) \right).
Cα(ξ~)=αlnEP(exp(αξ~)).
Essential Riskiness Index [2]
Definition. Given a random delay denoted by the random variables
ξ
~
∈
V
\tilde{\xi}\in\mathcal{V}
ξ~∈V with probability distribution
P
\mathbb{P}
P, the essential riskness index
ρ
E
:
V
→
[
0
,
∞
]
\rho_E:\mathcal{V}\rightarrow [0,\infty]
ρE:V→[0,∞] is defined as
ρ
E
(
ξ
~
)
=
inf
{
α
≥
0
∣
E
P
(
max
(
ξ
~
,
−
α
)
)
≤
0
}
.
\rho_E(\tilde{\xi})=\inf\left\{\alpha\ge0 \Big | \mathbb{E}_{\mathbb{P}} \left( \max \left( \tilde{\xi}, -\alpha \right) \right) \leq 0 \right\}.
ρE(ξ~)=inf{α≥0∣∣∣EP(max(ξ~,−α))≤0}.
Proposition For all ξ ~ , ξ ~ 1 , ξ ~ 2 ∈ V \tilde{\xi},\tilde{\xi}_1,\tilde{\xi}_2 \in \mathcal{V} ξ~,ξ~1,ξ~2∈V
- Satisficing: ρ E ( ξ ~ ) = 0 \rho_E(\tilde{\xi})=0 ρE(ξ~)=0 if and only if P ( ξ ~ ≤ 0 ) = 1 \mathbb{P}(\tilde{\xi}\leq 0)=1 P(ξ~≤0)=1.
- Infeasiblity: If E P ( ξ ~ ) > 0 \mathbb{E}_{\mathbb{P}}(\tilde{\xi})>0 EP(ξ~)>0, then ρ E ( ξ ~ ) = ∞ \rho_E(\tilde{\xi})=\infty ρE(ξ~)=∞.
- Convexity: For any λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ∈[0,1], ρ E ( λ ξ ~ 1 + ( 1 − λ ) ξ ~ 2 ) ≤ λ ρ E ( ξ ~ 1 ) + ( 1 − λ ) ρ E ( ξ ~ 2 ) \rho_E(\lambda\tilde{\xi}_1 + (1-\lambda)\tilde{\xi}_2)\leq \lambda \rho_E(\tilde{\xi}_1)+(1-\lambda)\rho_E(\tilde{\xi}_2) ρE(λξ~1+(1−λ)ξ~2)≤λρE(ξ~1)+(1−λ)ρE(ξ~2).
- Delay bounds: P ( ξ ~ > ρ E ( ξ ~ ) θ ) ≤ 1 1 + θ , ∀ θ > 0 \mathbb{P}\left(\tilde{\xi}>\rho_E(\tilde{\xi})\theta\right) \leq \frac{1}{1+\theta}, \quad \forall\;\theta >0 P(ξ~>ρE(ξ~)θ)≤1+θ1,∀θ>0.
Adversarial Impact Measure [1]
The function
ρ
:
L
→
[
0
,
+
∞
]
\rho:\mathcal{L} \rightarrow [0,+\infty]
ρ:L→[0,+∞] is an adversarial impact measure if it has the following representation
ρ
(
v
~
)
=
min
k
\rho(\tilde{v})=\min k
ρ(v~)=mink
s.t.
E
P
[
v
~
]
≤
k
Δ
(
P
,
P
^
)
,
∀
P
∈
P
0
\text{s.t. } \mathbb{E}_{\mathbb{P}}[\tilde{v}]\leq k\Delta(\mathbb{P},\hat{\mathbb{P}}),\; \forall \mathbb{P}\in\mathcal{P}_0
s.t. EP[v~]≤kΔ(P,P^),∀P∈P0
k
≥
0
k\ge 0
k≥0 for some probability distance function
Δ
\Delta
Δ.
THEOREM 1 (Properties of Adversarial Impact Measure [1]) The function
ρ
:
L
→
[
0
,
+
∞
]
\rho:\mathcal{L} \rightarrow [0,+\infty]
ρ:L→[0,+∞] is an adversarial impact measure if and only if it is lower semi-continuous and satisfies the following properties:
5. Monotonicity: If
v
~
1
≥
v
~
2
\tilde{v}_1\ge \tilde{v}_2
v~1≥v~2 , then
ρ
(
v
~
1
)
≥
ρ
(
v
~
2
)
\rho(\tilde{v}_1)\ge \rho(\tilde{v}_2)
ρ(v~1)≥ρ(v~2).
6. Infeasible Baseline: If
E
P
[
v
~
]
>
0
\mathbb{E}_{\mathbb{P}}[\tilde{v}]>0
EP[v~]>0, then
ρ
(
v
~
)
=
∞
\rho(\tilde{v})=\infty
ρ(v~)=∞ .
7. Full Robustness: If
v
~
≤
0
\tilde{v}\leq 0
v~≤0, then
ρ
(
v
~
)
=
0
\rho(\tilde{v})=0
ρ(v~)=0.
8. Positive Homogeneity: For any
λ
≥
0
\lambda\ge 0
λ≥0, we have
ρ
(
λ
v
~
)
=
λ
ρ
(
v
~
)
\rho(\lambda\tilde{v})=\lambda\rho(\tilde{v})
ρ(λv~)=λρ(v~).
9. Convexity: For any
λ
∈
[
0
,
1
]
\lambda\in[0,1]
λ∈[0,1], we have
ρ
(
λ
v
~
1
+
(
1
−
λ
)
v
~
2
)
≤
λ
ρ
(
v
~
1
)
+
(
1
−
λ
)
ρ
(
v
~
2
)
\rho(\lambda \tilde{v}_1+(1-\lambda)\tilde{v}_2)\leq \lambda\rho(\tilde{v}_1)+(1-\lambda)\rho(\tilde{v}_2)
ρ(λv~1+(1−λ)v~2)≤λρ(v~1)+(1−λ)ρ(v~2).
Moreover, the underlying probability distance Δ \Delta Δ is such that Δ ( P , P ^ ) = sup v ~ ∈ L { E P [ v ~ ] ∣ ρ ( v ~ ) ≤ 1 } \Delta(\mathbb{P},\hat{\mathbb{P}})=\mathop{\sup}\limits_{\tilde{v}\in\mathcal{L}}\{\mathbb{E}_{\mathbb{P}}[\tilde{v}] | \rho(\tilde{v})\leq 1\} Δ(P,P^)=v~∈Lsup{EP[v~]∣ρ(v~)≤1}.
Normalized Convex Risk Measure [1]
A normalized convex risk measure is a lower semi-continuous functional
μ
:
L
→
R
\mu:\mathcal{L}\rightarrow\mathbb{R}
μ:L→R, that satisfies the following properties:
- Monotonicity: If v ~ 1 ≥ v ~ 2 \tilde{v}_1\ge \tilde{v}_2 v~1≥v~2 , then μ ( v ~ 1 ) ≥ μ ( v ~ 2 ) \mu(\tilde{v}_1)\ge\mu(\tilde{v}_2) μ(v~1)≥μ(v~2).
- Translation invariance: For any a ∈ R a\in\mathbb{R} a∈R, μ ( v ~ + a ) = μ ( v ~ ) + a \mu(\tilde{v}+a)=\mu(\tilde{v})+a μ(v~+a)=μ(v~)+a.
- Convexity: For any λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ∈[0,1], μ ( λ v ~ 1 + ( 1 − λ ) v ~ 2 ) ≤ λ μ ( v ~ 1 ) + ( 1 − λ ) μ ( v ~ 2 ) \mu(\lambda \tilde{v}_1+(1-\lambda)\tilde{v}_2)\leq \lambda\mu(\tilde{v}_1)+(1-\lambda)\mu(\tilde{v}_2) μ(λv~1+(1−λ)v~2)≤λμ(v~1)+(1−λ)μ(v~2).
- Normalized: μ ( 0 ) = 0 \mu(0)=0 μ(0)=0.
Proposition (Risk-based Representation [1]). The functional ρ : L → [ 0 , + ∞ ] \rho:\mathcal{L} \rightarrow [0,+\infty] ρ:L→[0,+∞] is an adversarial impact measure if and only if there exists some convex risk measure μ : L → R \mu:\mathcal{L}\rightarrow\mathbb{R} μ:L→R, such that ρ ( v ~ ) = inf { k > 0 ∣ k μ ( v ~ k ) ≤ 0 } \rho(\tilde{v})=\inf\left\{k>0\Big|k\mu\left({\frac{\tilde{v}}{k}}\right)\leq 0\right\} ρ(v~)=inf{k>0∣∣∣kμ(kv~)≤0} for which μ ( v ~ ) \mu(\tilde{v}) μ(v~) is strictly positive whenever E P [ v ~ ] > 0 \mathbb{E}_{\mathbb{P}}[\tilde{v}]>0 EP[v~]>0.
证明: 定义
μ
(
v
~
)
:
=
inf
{
a
:
ρ
(
v
~
−
a
)
≤
1
}
\mu(\tilde{v}) := \inf\{a:\rho(\tilde{v}-a)\leq 1\}
μ(v~):=inf{a:ρ(v~−a)≤1}
那么
μ
(
v
~
k
)
≤
0
\mu\left(\frac{\tilde{v}}{k}\right)\leq 0
μ(kv~)≤0
⟺
E
P
(
v
~
k
)
≤
Δ
(
P
,
P
^
)
\Longleftrightarrow \mathbb{E}_{\mathbb{P}}\left(\frac{\tilde{v}}{k}\right)\leq \Delta\left(\mathbb{P},\hat{\mathbb{P}}\right)
⟺EP(kv~)≤Δ(P,P^)
⟺
ρ
(
v
~
k
)
=
1
\Longleftrightarrow \rho\left(\frac{\tilde{v}}{k}\right)=1
⟺ρ(kv~)=1
⟺
ρ
(
v
~
)
=
k
\Longleftrightarrow \rho(\tilde{v})=k
⟺ρ(v~)=k
Literature
[1] The Dao of Robustness
[2] Routing optimization with time windows under uncertainty
[3] Aumann, R.J., Serrano, R.: An economic index of riskiness. J. Polit. Econ. 116(5), 810–836 (2008)
[4] Brown and Sim: Satisficing Measures for Analysis of Risky Positions, Management Science(2019) 55(1), 71-84