Measure and Index in Robust Optimization

Definition

Satisficing Measure [4]
Let ( Ω , F , P ) (\Omega,\mathcal{F},\mathbb{P}) (Ω,F,P) be a measure space and let X \mathcal{X} X be a set of random variables on Ω \Omega Ω, i.e., a set of functions X : Ω → R X:\Omega\rightarrow\mathbb{R} X:ΩR. Each X ∈ X X\in\mathcal{X} XX represents the payoff (or return) of a different, risky position. Consider the situation in which the investor has an aspiration level τ \tau τ, which she hopes to achieve via these positions. We assume τ \tau τ a random variable on Ω \Omega Ω as well. Given an uncertain payoff X ∈ X X\in\mathcal{X} XX, we define the target premium V V V to be V = X − τ ∈ X V=X-\tau\in\mathcal{X} V=XτX.

Definition. A function ρ : X → [ 0 , ρ ˉ ] \rho:\mathcal{X}\rightarrow [0,\bar{\rho}] ρ:X[0,ρˉ], where ρ ˉ ∈ [ 1 , ∞ ] \bar{\rho}\in[1,\infty] ρˉ[1,], is a satisficing measure defined on the target premium if it satisfies the following axioms for all X , Y ∈ X X,Y\in\mathcal{X} X,YX:

  1. Attainment Content: If X ≥ 0 X\ge 0 X0, then ρ ( X ) = ρ ˉ \rho(X)=\bar{\rho} ρ(X)=ρˉ.
  2. Nonattainment apathy: If X < 0 X<0 X<0, then ρ ( X ) < 0 \rho(X)<0 ρ(X)<0.
  3. Monotonicity: If X ≥ Y X\ge Y XY, then ρ ( X ) ≥ ρ ( Y ) \rho(X)\ge\rho(Y) ρ(X)ρ(Y).
  4. Gain Continuity: lim ⁡ a ↓ 0 ρ ( X + a ) = ρ ( X ) \lim_{a\downarrow 0} \rho(X+a)=\rho(X) lima0ρ(X+a)=ρ(X)

Definition. A function ρ : X → [ 0 , ρ ˉ ] \rho:\mathcal{X}\rightarrow [0,\bar{\rho}] ρ:X[0,ρˉ], where ρ ˉ ∈ [ 1 , ∞ ] \bar{\rho}\in[1,\infty] ρˉ[1,], is a quasiconcave satisficing measure (QSM) defined on the target premium if, in addition to the conditions of satisficing measure, it satisfies the following axioms for all X , Y ∈ X X,Y\in\mathcal{X} X,YX:
1… Quasiconcavity: If λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1], ρ ( λ X + ( 1 − λ ) Y ) ≥ min ⁡ { ρ ( X ) , ρ ( Y ) } \rho(\lambda X+(1-\lambda)Y)\ge\min\{\rho(X),\rho(Y)\} ρ(λX+(1λ)Y)min{ρ(X),ρ(Y)}.
If in addition, ρ \rho ρ satisfies the following condition, we say it a coherent satisficing measure (CSM)
2. Scale Invariance: If k > 0 k>0 k>0, then ρ ( k X ) = ρ ( X ) \rho(kX)=\rho(X) ρ(kX)=ρ(X).

Risk Measure [4]
Definition. A function μ : X → R \mu:\mathcal{X}\rightarrow\mathbb{R} μ:XR is a risk measure if it satisfies the following for all X , Y ∈ X X,Y\in\mathcal{X} X,YX:

  1. Monotonicity: If X ≥ Y X\ge Y XY, then μ ( X ) ≤ μ ( Y ) \mu(X)\leq\mu(Y) μ(X)μ(Y).
  2. Translation invariance: For any a ∈ R a\in\mathbb{R} aR, μ ( X + a ) = μ ( X ) + a \mu(X+a)=\mu(X)+a μ(X+a)=μ(X)+a.

Definition. A function μ : X → R \mu:\mathcal{X}\rightarrow\mathbb{R} μ:XR is a convex risk measure if, in addition to the conditions of risk measure, it satisfies the following for all X , Y ∈ X X,Y\in\mathcal{X} X,YX:

  1. Convexity: For any λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1], μ ( λ X + ( 1 − λ ) Y ) ≤ λ μ ( X ) + ( 1 − λ ) μ ( Y ) \mu(\lambda X+(1-\lambda)Y)\leq \lambda\mu(X)+(1-\lambda)\mu(Y) μ(λX+(1λ)Y)λμ(X)+(1λ)μ(Y).
    If in addition, μ \mu μ satisfies the following condition, we say it a coherent risk measure :
  2. Positive Homogeneity: If λ ≥ 0 \lambda\ge 0 λ0, then μ ( λ X ) = λ μ ( X ) \mu(\lambda X)=\lambda\mu(X) μ(λX)=λμ(X).

It is well known that every coherent risk measure may be written in the form μ ( X ) = sup ⁡ Q ∈ Q E Q ( − X ) \mu(X)=\mathop{\sup}\limits_{\mathbb{Q}\in\mathcal{Q}}\mathbb{E}_{\mathbb{Q}}(-X) μ(X)=QQsupEQ(X) for a family of generating measures Q \mathcal{Q} Q.

Riskiness Index [3]
Definition. Given a random delay denoted by the random variables ξ ~ ∈ V \tilde{\xi}\in\mathcal{V} ξ~V with probability distribution P \mathbb{P} P, the riskness index ρ R : V → R \rho_R:\mathcal{V}\rightarrow\mathbb{R} ρR:VR is defined as ρ R ( ξ ~ ) = inf ⁡ { α > 0 ∣ C α ( ξ ~ ) ≤ 0 } \rho_R(\tilde{\xi})=\inf\left\{\alpha>0 \Big | C_{\alpha}(\tilde{\xi})\leq 0 \right\} ρR(ξ~)=inf{α>0Cα(ξ~)0}
where α > 0 \alpha >0 α>0 and C α ( ξ ~ ) C_{\alpha}(\tilde{\xi}) Cα(ξ~) is the certainty equivalent of the ξ ~ \tilde{\xi} ξ~ under exponential disutility given by C α ( ξ ~ ) = α ln ⁡ E P ( exp ⁡ ( ξ ~ α ) ) . C_{\alpha}(\tilde{\xi})=\alpha \ln \mathbb{E}_{\mathbb{P}} \left( \exp\left(\frac{\tilde{\xi}}{\alpha}\right) \right). Cα(ξ~)=αlnEP(exp(αξ~)).

Essential Riskiness Index [2]
Definition. Given a random delay denoted by the random variables ξ ~ ∈ V \tilde{\xi}\in\mathcal{V} ξ~V with probability distribution P \mathbb{P} P, the essential riskness index ρ E : V → [ 0 , ∞ ] \rho_E:\mathcal{V}\rightarrow [0,\infty] ρE:V[0,] is defined as ρ E ( ξ ~ ) = inf ⁡ { α ≥ 0 ∣ E P ( max ⁡ ( ξ ~ , − α ) ) ≤ 0 } . \rho_E(\tilde{\xi})=\inf\left\{\alpha\ge0 \Big | \mathbb{E}_{\mathbb{P}} \left( \max \left( \tilde{\xi}, -\alpha \right) \right) \leq 0 \right\}. ρE(ξ~)=inf{α0EP(max(ξ~,α))0}.

Proposition For all ξ ~ , ξ ~ 1 , ξ ~ 2 ∈ V \tilde{\xi},\tilde{\xi}_1,\tilde{\xi}_2 \in \mathcal{V} ξ~,ξ~1,ξ~2V

  1. Satisficing: ρ E ( ξ ~ ) = 0 \rho_E(\tilde{\xi})=0 ρE(ξ~)=0 if and only if P ( ξ ~ ≤ 0 ) = 1 \mathbb{P}(\tilde{\xi}\leq 0)=1 P(ξ~0)=1.
  2. Infeasiblity: If E P ( ξ ~ ) > 0 \mathbb{E}_{\mathbb{P}}(\tilde{\xi})>0 EP(ξ~)>0, then ρ E ( ξ ~ ) = ∞ \rho_E(\tilde{\xi})=\infty ρE(ξ~)=.
  3. Convexity: For any λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1], ρ E ( λ ξ ~ 1 + ( 1 − λ ) ξ ~ 2 ) ≤ λ ρ E ( ξ ~ 1 ) + ( 1 − λ ) ρ E ( ξ ~ 2 ) \rho_E(\lambda\tilde{\xi}_1 + (1-\lambda)\tilde{\xi}_2)\leq \lambda \rho_E(\tilde{\xi}_1)+(1-\lambda)\rho_E(\tilde{\xi}_2) ρE(λξ~1+(1λ)ξ~2)λρE(ξ~1)+(1λ)ρE(ξ~2).
  4. Delay bounds: P ( ξ ~ > ρ E ( ξ ~ ) θ ) ≤ 1 1 + θ , ∀    θ > 0 \mathbb{P}\left(\tilde{\xi}>\rho_E(\tilde{\xi})\theta\right) \leq \frac{1}{1+\theta}, \quad \forall\;\theta >0 P(ξ~>ρE(ξ~)θ)1+θ1,θ>0.

Adversarial Impact Measure [1]
The function ρ : L → [ 0 , + ∞ ] \rho:\mathcal{L} \rightarrow [0,+\infty] ρ:L[0,+] is an adversarial impact measure if it has the following representation
ρ ( v ~ ) = min ⁡ k \rho(\tilde{v})=\min k ρ(v~)=mink s.t.  E P [ v ~ ] ≤ k Δ ( P , P ^ ) ,    ∀ P ∈ P 0 \text{s.t. } \mathbb{E}_{\mathbb{P}}[\tilde{v}]\leq k\Delta(\mathbb{P},\hat{\mathbb{P}}),\; \forall \mathbb{P}\in\mathcal{P}_0 s.t. EP[v~]kΔ(P,P^),PP0 k ≥ 0 k\ge 0 k0 for some probability distance function Δ \Delta Δ.

THEOREM 1 (Properties of Adversarial Impact Measure [1]) The function ρ : L → [ 0 , + ∞ ] \rho:\mathcal{L} \rightarrow [0,+\infty] ρ:L[0,+] is an adversarial impact measure if and only if it is lower semi-continuous and satisfies the following properties:
5. Monotonicity: If v ~ 1 ≥ v ~ 2 \tilde{v}_1\ge \tilde{v}_2 v~1v~2 , then ρ ( v ~ 1 ) ≥ ρ ( v ~ 2 ) \rho(\tilde{v}_1)\ge \rho(\tilde{v}_2) ρ(v~1)ρ(v~2).
6. Infeasible Baseline: If E P [ v ~ ] > 0 \mathbb{E}_{\mathbb{P}}[\tilde{v}]>0 EP[v~]>0, then ρ ( v ~ ) = ∞ \rho(\tilde{v})=\infty ρ(v~)= .
7. Full Robustness: If v ~ ≤ 0 \tilde{v}\leq 0 v~0, then ρ ( v ~ ) = 0 \rho(\tilde{v})=0 ρ(v~)=0.
8. Positive Homogeneity: For any λ ≥ 0 \lambda\ge 0 λ0, we have ρ ( λ v ~ ) = λ ρ ( v ~ ) \rho(\lambda\tilde{v})=\lambda\rho(\tilde{v}) ρ(λv~)=λρ(v~).
9. Convexity: For any λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1], we have ρ ( λ v ~ 1 + ( 1 − λ ) v ~ 2 ) ≤ λ ρ ( v ~ 1 ) + ( 1 − λ ) ρ ( v ~ 2 ) \rho(\lambda \tilde{v}_1+(1-\lambda)\tilde{v}_2)\leq \lambda\rho(\tilde{v}_1)+(1-\lambda)\rho(\tilde{v}_2) ρ(λv~1+(1λ)v~2)λρ(v~1)+(1λ)ρ(v~2).

Moreover, the underlying probability distance Δ \Delta Δ is such that Δ ( P , P ^ ) = sup ⁡ v ~ ∈ L { E P [ v ~ ] ∣ ρ ( v ~ ) ≤ 1 } \Delta(\mathbb{P},\hat{\mathbb{P}})=\mathop{\sup}\limits_{\tilde{v}\in\mathcal{L}}\{\mathbb{E}_{\mathbb{P}}[\tilde{v}] | \rho(\tilde{v})\leq 1\} Δ(P,P^)=v~Lsup{EP[v~]ρ(v~)1}.

Normalized Convex Risk Measure [1]
A normalized convex risk measure is a lower semi-continuous functional μ : L → R \mu:\mathcal{L}\rightarrow\mathbb{R} μ:LR, that satisfies the following properties:

  1. Monotonicity: If v ~ 1 ≥ v ~ 2 \tilde{v}_1\ge \tilde{v}_2 v~1v~2 , then μ ( v ~ 1 ) ≥ μ ( v ~ 2 ) \mu(\tilde{v}_1)\ge\mu(\tilde{v}_2) μ(v~1)μ(v~2).
  2. Translation invariance: For any a ∈ R a\in\mathbb{R} aR, μ ( v ~ + a ) = μ ( v ~ ) + a \mu(\tilde{v}+a)=\mu(\tilde{v})+a μ(v~+a)=μ(v~)+a.
  3. Convexity: For any λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1], μ ( λ v ~ 1 + ( 1 − λ ) v ~ 2 ) ≤ λ μ ( v ~ 1 ) + ( 1 − λ ) μ ( v ~ 2 ) \mu(\lambda \tilde{v}_1+(1-\lambda)\tilde{v}_2)\leq \lambda\mu(\tilde{v}_1)+(1-\lambda)\mu(\tilde{v}_2) μ(λv~1+(1λ)v~2)λμ(v~1)+(1λ)μ(v~2).
  4. Normalized: μ ( 0 ) = 0 \mu(0)=0 μ(0)=0.

Proposition (Risk-based Representation [1]). The functional ρ : L → [ 0 , + ∞ ] \rho:\mathcal{L} \rightarrow [0,+\infty] ρ:L[0,+] is an adversarial impact measure if and only if there exists some convex risk measure μ : L → R \mu:\mathcal{L}\rightarrow\mathbb{R} μ:LR, such that ρ ( v ~ ) = inf ⁡ { k > 0 ∣ k μ ( v ~ k ) ≤ 0 } \rho(\tilde{v})=\inf\left\{k>0\Big|k\mu\left({\frac{\tilde{v}}{k}}\right)\leq 0\right\} ρ(v~)=inf{k>0kμ(kv~)0} for which μ ( v ~ ) \mu(\tilde{v}) μ(v~) is strictly positive whenever E P [ v ~ ] > 0 \mathbb{E}_{\mathbb{P}}[\tilde{v}]>0 EP[v~]>0.

证明: 定义
μ ( v ~ ) : = inf ⁡ { a : ρ ( v ~ − a ) ≤ 1 } \mu(\tilde{v}) := \inf\{a:\rho(\tilde{v}-a)\leq 1\} μ(v~):=inf{a:ρ(v~a)1}
那么
μ ( v ~ k ) ≤ 0 \mu\left(\frac{\tilde{v}}{k}\right)\leq 0 μ(kv~)0 ⟺ E P ( v ~ k ) ≤ Δ ( P , P ^ ) \Longleftrightarrow \mathbb{E}_{\mathbb{P}}\left(\frac{\tilde{v}}{k}\right)\leq \Delta\left(\mathbb{P},\hat{\mathbb{P}}\right) EP(kv~)Δ(P,P^) ⟺ ρ ( v ~ k ) = 1 \Longleftrightarrow \rho\left(\frac{\tilde{v}}{k}\right)=1 ρ(kv~)=1 ⟺ ρ ( v ~ ) = k \Longleftrightarrow \rho(\tilde{v})=k ρ(v~)=k

Literature

[1] The Dao of Robustness
[2] Routing optimization with time windows under uncertainty
[3] Aumann, R.J., Serrano, R.: An economic index of riskiness. J. Polit. Econ. 116(5), 810–836 (2008)
[4] Brown and Sim: Satisficing Measures for Analysis of Risky Positions, Management Science(2019) 55(1), 71-84

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zte10096334

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值