1. Base-Stock Policy
1.1. 背景
考虑单产品多周期的库存管理问题,寻求最优的订货策略,使得总体成本最低。在每个周期,如果订货过多,导致库存多余,会产生库存持有成本;如果订货较少,导致缺货,会有延迟交货成本(这里假设缺货的情况下不会丢失订单)。
1.2. 模型
参数 | 含义 |
---|---|
c H c_H cH | 单位产品库存持有成本 |
c P c_P cP | 单位产品延迟交付成本 |
c c c | 单位产品订货成本 |
D D D | 单周期内需求数,一个随机变量 |
Φ \Phi Φ | 单周期内需求分布,密度函数为 ϕ \phi ϕ,均值为 μ \mu μ |
v T v_T vT | 最后一个周期 N N N 的成本函数 |
α \alpha α | 折扣因子 |
合理假设 | 含义 |
---|---|
c P > ( 1 − α ) c c_P>(1-\alpha)c cP>(1−α)c | 避免一直不订货成为最优策略 |
c H + ( 1 − α ) c > 0 c_H+(1-\alpha)c>0 cH+(1−α)c>0 | 技术要求,这个通常是满足的,因为正常情况下都有 c H ≥ 0 c_H\ge 0 cH≥0 |
持有/缺货成本函数:
L ( x ) : = c H x + + c P ( − x ) + \mathcal{L}(x):=c_Hx^++c_P(-x)^+ L(x):=cHx++cP(−x)+
动态规划模型
要素 | 变量 | 含义 |
---|---|---|
状态 | x x x | 周期 t t t 开始时的库存水平 |
策略 | y y y | 周期 t t t 订货后的库存水平 |
迁移状态 | x t + 1 x_{t+1} xt+1 | x t |