Note

Taking a 1 ′ = a 1 − a 2 , a 2 ′ = a 2 a_1'=a_1-a_2, a_2'=a_2 a1=a1a2,a2=a2 and b 1 ′ = b 1 − b 2 , b 2 ′ = b 2 b_1'=b_1-b_2, b_2'=b_2 b1=b1b2,b2=b2, and T ˉ = T − μ 1 ′ x \bar{T}=T-\mathbf{\mu}_1'\mathbf{x} Tˉ=Tμ1x, we have
[ b 1 λ + b 2 ] η + [ a 1 λ + a 2 ] T ˉ ≤ σ 1 ∣ a 1 ∣ λ ( 1 − λ ) [b_1\lambda+b_2]\eta + [a_1\lambda+a_2]\bar{T} \leq \sigma_1\left|a_1\right|\sqrt{\lambda(1-\lambda)} [b1λ+b2]η+[a1λ+a2]Tˉσ1a1λ(1λ)

f ( λ ) = ( b 1 η + a 1 T ˉ ) λ − σ 1 ∣ a 1 ∣ λ ( 1 − λ ) + b 2 η + a 2 T ˉ f(\lambda)=(b_1\eta+a_1\bar{T})\lambda-\sigma_1\left|a_1\right|\sqrt{\lambda(1-\lambda)}+b_2\eta+a_2\bar{T} f(λ)=(b1η+a1Tˉ)λσ1a1λ(1λ) +b2η+a2Tˉ
f ′ ( λ ) = ( b 1 η + a 1 T ˉ ) − σ 1 ∣ a 1 ∣ 1 − 2 λ 2 λ ( 1 − λ ) f'(\lambda)=(b_1\eta+a_1\bar{T})- \sigma_1\left|a_1\right|\frac{1-2\lambda}{2\sqrt{\lambda(1-\lambda)}} f(λ)=(b1η+a1Tˉ)σ1a12λ(1λ) 12λ
Let M 1 = b 1 η + a 1 T ˉ , M 2 = b 2 η + a 2 T ˉ , N = σ 1 ∣ a 1 ∣ , Q = 4 N 2 + 4 M 1 2 ≥ 0 M_1=b_1\eta+a_1\bar{T}, \quad M_2=b_2\eta+a_2\bar{T}, \quad N=\sigma_1\left|a_1\right|, \quad Q=4N^2+4M_1^2\ge 0 M1=b1η+a1Tˉ,M2=b2η+a2Tˉ,N=σ1a1,Q=4N2+4M120,
f ′ ( λ ) = 0 ⇒ 4 M 1 2 λ ( 1 − λ ) = N 2 ( 1 − 2 λ ) 2 ⇒ Q λ 2 − Q λ + N 2 = 0 f'(\lambda)=0 \Rightarrow 4M_1^2\lambda(1-\lambda)=N^2(1-2\lambda)^2 \Rightarrow Q\lambda^2-Q\lambda+N^2=0 f(λ)=04M12λ(1λ)=N2(12λ)2Qλ2Qλ+N2=0
λ 1 = 1 2 − 1 2 1 − 4 N 2 Q , λ 2 = 1 2 + 1 2 1 − 4 N 2 Q \lambda_1=\frac{1}{2} - \frac{1}{2}\sqrt{1-4\frac{N^2}{Q}}, \quad \lambda_2=\frac{1}{2} + \frac{1}{2}\sqrt{1-4\frac{N^2}{Q}} λ1=212114QN2 ,λ2=21+2114QN2
sup ⁡ f ( λ ) = max ⁡ { f ( 0 ) , f ( 1 ) , f ( λ 1 ) , f ( λ 2 ) } \sup f(\lambda)=\max\left\{ f(0), f(1), f(\lambda_1), f(\lambda_2) \right\} supf(λ)=max{f(0),f(1),f(λ1),f(λ2)}
f ( 0 ) = M 2 f(0)=M_2 f(0)=M2
f ( 1 ) = M 1 + M 2 f(1)=M_1+M_2 f(1)=M1+M2
f ( λ 1 ) = M 1 λ 1 − N 2 1 Q + M 2 f(\lambda_1)=M_1\lambda_1-N^2\sqrt{\frac{1}{Q}}+M_2 f(λ1)=M1λ1N2Q1 +M2
f ( λ 2 ) = M 1 λ 2 − N 2 1 Q + M 2 f(\lambda_2)=M_1\lambda_2-N^2\sqrt{\frac{1}{Q}}+M_2 f(λ2)=M1λ2N2Q1 +M2

Case 1. M 1 ≥ 0 M_1\ge 0 M10

In this case, f ( λ 1 ) ≤ f ( λ 2 ) f(\lambda_1)\leq f(\lambda_2) f(λ1)f(λ2), f ( 0 ) ≤ f ( 1 ) f(0)\leq f(1) f(0)f(1), 显然有 f ( λ 2 ) ≤ f ( 1 ) f(\lambda_2)\leq f(1) f(λ2)f(1), so sup ⁡ f ( λ ) = f ( 1 ) = M 1 + M 2 \sup f(\lambda)=f(1)=M_1+M_2 supf(λ)=f(1)=M1+M2.

Case 2. M 1 < 0 M_1< 0 M1<0
In this case, f ( λ 2 ) < f ( λ 1 ) < 0 f(\lambda_2)<f(\lambda_1)<0 f(λ2)<f(λ1)<0, f ( 1 ) < f ( 0 ) f(1)<f(0) f(1)<f(0),所以 sup ⁡ f ( λ ) = f ( 0 ) = M 2 \sup f(\lambda)=f(0)=M_2 supf(λ)=f(0)=M2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zte10096334

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值