新学mycat 之前看了两片博文自己 结合自己的知识分析 记录一下 拯救7秒记忆
以下纯属个人见解
如有瞎比比 请及时纠正
分析一下
昨天有空看了下数据库的一些知识 遇到大数据 大用户量的情况 无非就是几种解决方案
其中涉及到数据库的知识和难点有
1.优化sql
2.主从读写分离
3.分库
4.分表
5.集群
6.分布式事务
7.锁
mycat的作用
不知道官网是扎样描述的 反正一定很牛批
在我的理解里mycat的主要作用是整合逻辑数据库,也就是将不同数据库中的表,在逻辑上合并到一个虚拟的数据库,用户可以对这个mycat逻辑数据库操作,从而透明无感知的变相操作数个数据库表,解决多数据库存储,读写分离等带来的复杂逻辑。
就比方有A,B,C 3张表 DB1,DB2,DB3 3个数据库 A表在BD1 B表被分成2份存储在BD2和BD3 C表被分成3份存储在BD1,2,3中,
这时我们可以对mycat进行配置后 访问mycat逻辑数据库 达到的效果就是出现新的数据库 里面有A,B,C 3张表的所有数据,修改任意数据都会自动对其应该存储的数据库进行相应的变动,用户不用关心具体要怼哪个数据库。
这也是mycat的好处与强大之处
mycat的坏处
有好处就有坏处,mycat有3大坏处,或者说是 目前所有数据库中间件都没解决的坏处。哦 也许有解决 上次哪个论坛看到有人说国外一款P开头的中间件可以做到
1.非分片字段查询效率低
简单的说就是mycat根据用户配置的规则可以把多个数据库整合成一个新的逻辑数据库,所以当查询条件中有分片字段的时候,它就会直接去相应的节点据库查询。
但是当查询条件中没有分片字段的时候,它就不知道去哪个数据库查了 它就会把请求发送到所有的节点数据库上进行查询,会极大消耗Mycat和MySQL数据库资源。
挽救办法
不要用非分片字段去查啊
不要用非分片字段去查啊
不要用非分片字段去查啊
实在需要的话,要么就利用mycat自带的语法指定节点多线程遍历
<select id="selectData" resultType="java.lang.Integer"
parameterType="com.test.model.LimitNumModel">
/**mycat:dataNode=${dataNodeName}*/select
*
from
t_product a
WHERE
a.order_id is null
</select>
起码比一个查询查N久还有可能内存溢出好吧
2.分页查询
依照上一个坏处,mycat的分页查询条件如果没有分片字段,就会想所有节点数据库查询,会消耗大量资源,消耗资源也就算了,有趣的是它查询出的结果不一定是我们想要的。
抄个例子过来:
比如有个C表 存在BD1,2,3 3个节点数据库
当应用执行如下分页查询时
mysql>select * from table limit 2;
Mycat将该SQL请求分发到各个DB节点去执行,并接收各个DB节点的返回结果
DB1: [0,1]
DB2: [5,6]
DB3: [20,21]
但Mycat向应用返回的结果集取决于哪个DB节点最先返回结果给Mycat。如果Mycat最先收到DB1节点的结果集,那么Mycat返回给应用端的结果集为 [0,1],如果Mycat最先收到DB2节点的结果集,那么返回给应用端的结果集为 [5,6]。也就是说,相同情况下,同一个SQL,在Mycat上执行时会有不同的返回结果。
想要解决这个问题很简单,只需要加上排序条件就行了。mycat会把各个查询结果拿到进行最小堆运算,计算出所有结果集中最小的两条记录 [0,1] 返回给应用。
别以为这样就没问题了,mycat还有个深度分页问题呢。
再抄个例子:
但是,当排序分页中有 偏移量 (offset)时,处理逻辑又有不同。假如应用的查询SQL如下:
mysql>select * from table order by id limit 5,2;
Mycat将各个DB节点返回的数据 [10,11], [16,17], [20,21] 经过最小堆计算后返回给应用的结果集是 [10,11]。可是,对于应用而言,该表的所有数据明明是 0-29 这30个数据的集合,limit 5,2 操作返回的结果集应该是 [5,6],如果返回 [10,11] 则是错误的处理逻辑。
所以Mycat在处理 有偏移量的排序分页 时是另外一套逻辑——改写SQL。
Mycat在下发有 limit m,n 的SQL语句时会对其进行改写,改写成 limit 0, m+n 来保证查询结果的逻辑正确性。所以,Mycat发送到后端DB上的SQL语句是
mysql>select * from table order by id limit 0,7;
各个DB返回给Mycat的结果集是
DB1: [0,1,2,3,4,10,11]
DB2: [5,6,7,8,9,16,17]
DB3: [20,21,22,23,24,25,26]
经过最小堆计算后得到最小序列 [0,1,2,3,4,5,6] ,然后返回偏移量为5的两个结果为 [5,6] 。
虽然Mycat返回了正确的结果,但是仔细推敲发现这类操作的处理逻辑是及其消耗(浪费)资源的。应用需要的结果集为2条,Mycat中需要处理的结果数为21条。也就是说,对于有 t 个DB节点的全分片 limit m, n 操作,Mycat需要处理的数据量为 (m+n)*t 个。比如实际应用中有50个DB节点,要执行limit 1000,10操作,则Mycat处理的数据量为 50500 条,返回结果集为10,当偏移量更大时,内存和CPU资源的消耗则是数十倍增加。
挽救办法
没有查到mycat深度分页的解决办法,换种思路去看,也许mycat+一些搜索引擎一起使用会有奇效 比如ElasticSearch+mycat,不知道是不是瞎比比 反正我也没试过。
3.任意表JOIN
分库后,join的查询语句很可能因为关系表不在同一个库而查询不到结果
还有单库表与分库表也是不能join的
挽救办法
给予关系表相同的分片规则
4.分布式弱事务
mycat支持分布式事务,但是它是弱事务。
所谓的弱事务:
就是根据分片规则依次在不同的物理库上执行,如果当中任何一个节点出现问题则所有操作都要回滚。这点没什么异议。
如果各个节点预执行语句都成功,各个节点在执行commit提交事务时,如果一个节点发生异常,则mycat无法回滚已提交的事务,从这点来说他是一个弱事务。
挽救办法
难道要等待消息中间件执行返回进行自己的事务处理?
mycat的简单配置
首先去官网下载mycat
我下载的是:Mycat-server-1.6-RELEASE-20161028204710-win.tar.gz
解压后进入conf文件夹
里面有3个文件比较重要
1.schema.xml
用来配置建立逻辑数据库
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100">
<table name="aaa" dataNode="dn1" primaryKey="id"/>
<table name="bbb" dataNode="dn2,dn3" primaryKey="id" rule="test_rule" />
</schema>
<dataNode name="dn1" dataHost="localhost1" database="test1" />
<dataNode name="dn2" dataHost="localhost1" database="test2" />
<dataNode name="dn3" dataHost="localhost1" database="test3" />
<dataHost name="localhost1" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="hostS1" url="localhost:3306" user="root"
password="123456" />
</dataHost>
</mycat:schema>
2.server.xml
多来配置mycat服务器权限 防火墙 用户等
<?xml version="1.0" encoding="UTF-8"?>
<!-- - - Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License. - You
may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0
- - Unless required by applicable law or agreed to in writing, software -
distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the
License for the specific language governing permissions and - limitations
under the License. -->
<!DOCTYPE mycat:server SYSTEM "server.dtd">
<mycat:server xmlns:mycat="http://io.mycat/">
<system>
<property name="useSqlStat">0</property> <!-- 1为开启实时统计、0为关闭 -->
<property name="useGlobleTableCheck">0</property> <!-- 1为开启全加班一致性检测、0为关闭 -->
<property name="sequnceHandlerType">2</property>
<!-- <property name="useCompression">1</property>--> <!--1为开启mysql压缩协议-->
<!-- <property name="fakeMySQLVersion">5.6.20</property>--> <!--设置模拟的MySQL版本号-->
<!-- <property name="processorBufferChunk">40960</property> -->
<!--
<property name="processors">1</property>
<property name="processorExecutor">32</property>
-->
<!--默认为type 0: DirectByteBufferPool | type 1 ByteBufferArena-->
<property name="processorBufferPoolType">0</property>
<!--默认是65535 64K 用于sql解析时最大文本长度 -->
<!--<property name="maxStringLiteralLength">65535</property>-->
<!--<property name="sequnceHandlerType">0</property>-->
<!--<property name="backSocketNoDelay">1</property>-->
<!--<property name="frontSocketNoDelay">1</property>-->
<!--<property name="processorExecutor">16</property>-->
<!--
<property name="serverPort">8066</property> <property name="managerPort">9066</property>
<property name="idleTimeout">300000</property> <property name="bindIp">0.0.0.0</property>
<property name="frontWriteQueueSize">4096</property> <property name="processors">32</property> -->
<!--分布式事务开关,0为不过滤分布式事务,1为过滤分布式事务(如果分布式事务内只涉及全局表,则不过滤),2为不过滤分布式事务,但是记录分布式事务日志-->
<property name="handleDistributedTransactions">0</property>
<!--
off heap for merge/order/group/limit 1开启 0关闭
-->
<property name="useOffHeapForMerge">1</property>
<!--
单位为m
-->
<property name="memoryPageSize">1m</property>
<!--
单位为k
-->
<property name="spillsFileBufferSize">1k</property>
<property name="useStreamOutput">0</property>
<!--
单位为m
-->
<property name="systemReserveMemorySize">384m</property>
<!--是否采用zookeeper协调切换 -->
<property name="useZKSwitch">true</property>
</system>
<!-- 全局SQL防火墙设置 -->
<!--
<firewall>
<whitehost>
<host host="127.0.0.1" user="mycat"/>
<host host="127.0.0.2" user="mycat"/>
</whitehost>
<blacklist check="false">
</blacklist>
</firewall>
-->
<user name="root">
<property name="password">123456</property>
<property name="schemas">TESTDB</property>
<!-- 表级 DML 权限设置 -->
<!--
<privileges check="false">
<schema name="TESTDB" dml="0110" >
<table name="tb01" dml="0000"></table>
<table name="tb02" dml="1111"></table>
</schema>
</privileges>
-->
</user>
<user name="user">
<property name="password">user</property>
<property name="schemas">TESTDB</property>
<property name="readOnly">true</property>
</user>
</mycat:server>
3.rule.xml
用来配置分片逻辑 这里配置完了 可以再schema 中通过rule="rule_name"引用
<?xml version="1.0" encoding="UTF-8"?>
<!-- - - Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License. - You
may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0
- - Unless required by applicable law or agreed to in writing, software -
distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the
License for the specific language governing permissions and - limitations
under the License. -->
<!DOCTYPE mycat:rule SYSTEM "rule.dtd">
<mycat:rule xmlns:mycat="http://io.mycat/">
<tableRule name="test_rule">
<rule>
<columns>id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<tableRule name="rule1">
<rule>
<columns>id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<tableRule name="rule2">
<rule>
<columns>user_id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<tableRule name="sharding-by-intfile">
<rule>
<columns>sharding_id</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<tableRule name="auto-sharding-long">
<rule>
<columns>id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
<tableRule name="mod-long">
<rule>
<columns>id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<tableRule name="sharding-by-murmur">
<rule>
<columns>id</columns>
<algorithm>murmur</algorithm>
</rule>
</tableRule>
<tableRule name="crc32slot">
<rule>
<columns>id</columns>
<algorithm>crc32slot</algorithm>
</rule>
</tableRule>
<tableRule name="sharding-by-month">
<rule>
<columns>create_time</columns>
<algorithm>partbymonth</algorithm>
</rule>
</tableRule>
<tableRule name="latest-month-calldate">
<rule>
<columns>calldate</columns>
<algorithm>latestMonth</algorithm>
</rule>
</tableRule>
<tableRule name="auto-sharding-rang-mod">
<rule>
<columns>id</columns>
<algorithm>rang-mod</algorithm>
</rule>
</tableRule>
<tableRule name="jch">
<rule>
<columns>id</columns>
<algorithm>jump-consistent-hash</algorithm>
</rule>
</tableRule>
<function name="murmur"
class="io.mycat.route.function.PartitionByMurmurHash">
<property name="seed">0</property><!-- 默认是0 -->
<property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片 -->
<property name="virtualBucketTimes">160</property><!-- 一个实际的数据库节点被映射为这么多虚拟节点,默认是160倍,也就是虚拟节点数是物理节点数的160倍 -->
<!-- <property name="weightMapFile">weightMapFile</property> 节点的权重,没有指定权重的节点默认是1。以properties文件的格式填写,以从0开始到count-1的整数值也就是节点索引为key,以节点权重值为值。所有权重值必须是正整数,否则以1代替 -->
<!-- <property name="bucketMapPath">/etc/mycat/bucketMapPath</property>
用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的murmur hash值与物理节点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 -->
</function>
<function name="crc32slot"
class="io.mycat.route.function.PartitionByCRC32PreSlot">
<property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片 -->
</function>
<function name="hash-int"
class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
</function>
<function name="rang-long"
class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
</function>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<property name="count">2</property>
</function>
<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">8</property>
<property name="partitionLength">128</property>
</function>
<function name="latestMonth"
class="io.mycat.route.function.LatestMonthPartion">
<property name="splitOneDay">24</property>
</function>
<function name="partbymonth"
class="io.mycat.route.function.PartitionByMonth">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2015-01-01</property>
</function>
<function name="rang-mod" class="io.mycat.route.function.PartitionByRangeMod">
<property name="mapFile">partition-range-mod.txt</property>
</function>
<function name="jump-consistent-hash" class="io.mycat.route.function.PartitionByJumpConsistentHash">
<property name="totalBuckets">3</property>
</function>
</mycat:rule>
弄完配文件以后
开始菜单 ———》》 输入cmd ———》》回车
我的mcat的bin路径:E:\mycat\mycat\bin
mycat install 安装mycat命令
mycat start 启动mycat
mycat stop 停止mycat
等等