一. 题目描述
给你一个下标从 0 开始的 正 整数数组 nums
。
如果 nums
的一个子数组满足:移除这个子数组后剩余元素 严格递增 ,那么我们称这个子数组为 移除递增 子数组。比方说,[5, 3, 4, 6, 7]
中的 [3, 4]
是一个移除递增子数组,因为移除该子数组后,[5, 3, 4, 6, 7]
变为 [5, 6, 7]
,是严格递增的。
请你返回 nums
中 移除递增 子数组的总数目。
注意 ,剩余元素为空的数组也视为是递增的。
子数组 指的是一个数组中一段连续的元素序列。
示例 1:
输入:nums = [1,2,3,4] 输出:10 解释:10 个移除递增子数组分别为:[1], [2], [3], [4], [1,2], [2,3], [3,4], [1,2,3], [2,3,4] 和 [1,2,3,4]。移除任意一个子数组后,剩余元素都是递增的。注意,空数组不是移除递增子数组。
示例 2:
输入:nums = [6,5,7,8] 输出:7 解释:7 个移除递增子数组分别为:[5], [6], [5,7], [6,5], [5,7,8], [6,5,7] 和 [6,5,7,8] 。 nums 中只有这 7 个移除递增子数组。
示例 3:
输入:nums = [8,7,6,6] 输出:3 解释:3 个移除递增子数组分别为:[8,7,6], [7,6,6] 和 [8,7,6,6] 。注意 [8,7] 不是移除递增子数组因为移除 [8,7] 后 nums 变为 [6,6] ,它不是严格递增的。
提示:
1 <= nums.length <= 50
1 <= nums[i] <= 50
二. 解题思路(力扣官方题解)
枚举 nums 中的每个子数组并判断是否为移除递增子数组。当枚举的子数组范围是 [l,r] 时,若满足如下条件则该子数组是移除递增子数组:
若 nums[l] 左侧有元素,并且这些元素满足严格递增;
若 nums[r] 右侧有元素,并且这些元素满足严格递增;
若 nums[l] 左侧有元素并且 nums[r] 右侧有元素,并且 nums[l]<nums[r+1]。
统计所有满足以上条件的子数组。
三. 解题代码
class Solution {
public:
bool isIncrease(vector<int>& nums, int i, int j){
for(int k = 1; k < nums.size(); k++){
if(k >= i && k <= j + 1){
continue;
}
if(nums[k] <= nums[k - 1]){
return false;
}
}
if(i - 1 >= 0 && j + 1 < nums.size() && nums[j + 1] <= nums[i - 1]){
return false;
}
return true;
}
int incremovableSubarrayCount(vector<int>& nums) {
int n = nums.size();
int result = 0;
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
if(isIncrease(nums, i, j)){
result++;
}
}
}
return result;
}
};
四. 复杂度分析
时间复杂度:O(n3),其中 n 为 nums 的长度。枚举所有子数组的时间复杂度为 O(n2),判断一个子数组是否为移除递增子数组的时间复杂度为 O(n),因此总体时间复杂度为 O(n3)。
空间复杂度:O(1)。