一、经验总结
之前我们已经研究过了BFS解决FloodFill算法:【优选算法】BFS解决FloodFill算法-CSDN博客
DFS只是遍历顺序发生了变化,其他需要注意的点大差不差。
二、相关编程题
2.1 图像渲染
题目链接
题目描述
算法原理
以给定的初始坐标为起点开始进行DFS,将遍历到的每个位置都修改为新的颜色值(可以防止重复遍历)。需要注意的是,如果修改前后的颜色值相同则会出现重复遍历以至于死循环的结果,所以要进行特殊处理。
编写代码
class Solution {
int dx[4] = {1, -1, 0, 0};
int dy[4] = {0, 0, 1, -1};
int m, n, oldcolor, newcolor;
public:
vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int color) {
if(image[sr][sc] == color) return image;
m = image.size(), n = image[0].size();
newcolor = color, oldcolor = image[sr][sc];
image[sr][sc] = newcolor;
DFS(image, sr, sc);
return image;
}
void DFS(vector<vector<int>>& image, int sr, int sc)
{
for(int i = 0; i < 4; ++i)
{
int x=sr+dx[i], y = sc+dy[i];
if(x>=0 && x<m && y>=0 && y<n && image[x][y]==oldcolor)
{
image[x][y] = newcolor;
DFS(image, x, y);
}
}
}
};
2.2 岛屿数量
题目链接
题目描述
算法原理
遍历grid数组,当遇到未访问的陆地时:
- 统计岛屿数量
- 以该位置为起点进行深度优先遍历,遍历整个连通块
- 将整个连通块中的所有陆地都标记为已访问
编写代码
class Solution {
int m, n, ret;
vector<vector<bool>> visited;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
public:
int numIslands(vector<vector<char>>& grid) {
m = grid.size(), n = grid[0].size();
visited.resize(m, vector<bool>(n, false));
for(int i = 0; i < m; ++i)
{
for(int j = 0; j < n; ++j)
{
if(grid[i][j]=='1' && !visited[i][j])
{
++ret;
DFS(grid, i, j);
}
}
}
return ret;
}
void DFS(vector<vector<char>>& grid, int r, int c)
{
visited[r][c] = true;
for(int i = 0; i < 4; ++i)
{
int x=r+dx[i], y=c+dy[i];
if(x>=0 && x<m && y>=0 && y<n && grid[x][y]=='1' && !visited[x][y])
{
DFS(grid, x, y);
}
}
}
};
2.3 岛屿的最大面积
题目链接
题目描述
算法原理
同上一题基本相同,之不过需要多添加一个变量用于统计每个岛屿的面积。最终返回岛屿的最大面积。
编写代码
class Solution {
int m, n, ret, tmp;
vector<vector<bool>> visited;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
public:
int maxAreaOfIsland(vector<vector<int>>& grid) {
m = grid.size(), n = grid[0].size();
visited.resize(m, vector<bool>(n, false));
for(int i = 0; i < m; ++i)
{
for(int j = 0; j < n; ++j)
{
if(grid[i][j]==1 && !visited[i][j])
{
tmp = 0;
DFS(grid, i, j);
ret = max(tmp, ret);
}
}
}
return ret;
}
void DFS(vector<vector<int>>& grid, int r, int c)
{
++tmp;
visited[r][c] = true;
for(int i = 0; i < 4; ++i)
{
int x=r+dx[i], y=c+dy[i];
if(x>=0 && x<m && y>=0 && y<n && grid[x][y]==1 && !visited[x][y])
{
DFS(grid, x, y);
}
}
}
};
2.4 被围绕的区域
题目链接
题目描述
算法原理
编写代码
class Solution {
int m, n;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
public:
void solve(vector<vector<char>>& board) {
m = board.size(), n = board[0].size();
for(int i = 0; i < m; ++i)
{
if(board[i][0] == 'O') DFS(board, i, 0);
if(board[i][n-1] == 'O') DFS(board, i, n-1);
}
for(int j = 0; j < n; ++j)
{
if(board[0][j] == 'O') DFS(board, 0, j);
if(board[m-1][j] == 'O') DFS(board, m-1, j);
}
for(int i = 0; i < m; ++i)
{
for(int j = 0; j < n; ++j)
{
if(board[i][j] == 'O') board[i][j] = 'X';
if(board[i][j] == '.') board[i][j] = 'O';
}
}
}
void DFS(vector<vector<char>>& board, int r, int c)
{
board[r][c] = '.';
for(int i = 0; i < 4; ++i)
{
int x=r+dx[i], y=c+dy[i];
if(x>=0 && x<m && y>=0 && y<n && board[x][y]=='O')
{
DFS(board, x, y);
}
}
}
};
2.5 太平洋大西洋水流问题
题目链接
417. 太平洋大西洋水流问题 - 力扣(LeetCode)
题目描述
算法原理
- 统计太平洋水流:以紧邻太平洋的水域(第一行和第一列)为起点逆着水流的方向(>=)进行深度优先遍历,将DFS访问过的水域标记在pacific哈希表。
- 统计大西洋水流:以紧邻大西洋的水域(最后一行和最后一列)为起点逆着水流的方向(>=)进行深度优先遍历,将DFS访问过的水域标记在atlantic哈希表。
- 找到太平洋和大西洋水流的交集,返回结果。
编写代码
class Solution {
int m, n;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
vector<vector<bool>> pacific;
vector<vector<bool>> atlantic;
public:
vector<vector<int>> pacificAtlantic(vector<vector<int>>& heights) {
m = heights.size(), n = heights[0].size();
pacific.resize(m, vector<bool>(n, false));
atlantic.resize(m, vector<bool>(n, false));
vector<vector<int>> ret;
for(int i = 0; i < m; ++i)
{
if(!pacific[i][0]) DFS(heights, pacific, i, 0);
if(!atlantic[i][n-1]) DFS(heights, atlantic, i, n-1);
}
for(int j = 0; j < n; ++j)
{
if(!pacific[0][j]) DFS(heights, pacific, 0, j);
if(!atlantic[m-1][j]) DFS(heights, atlantic, m-1, j);
}
for(int i = 0; i < m; ++i)
{
for(int j = 0; j < n; ++j)
{
if(pacific[i][j] && atlantic[i][j])
{
ret.push_back({i, j});
}
}
}
return ret;
}
void DFS(vector<vector<int>>& heights, vector<vector<bool>>& ocean, int r, int c)
{
ocean[r][c] = true;
for(int i = 0; i < 4; ++i)
{
int x=r+dx[i], y=c+dy[i];
if(x>=0 && x<m && y>=0 && y<n && !ocean[x][y] && heights[x][y]>=heights[r][c])
{
DFS(heights, ocean, x, y);
}
}
}
};
2.6 扫雷游戏
题目链接
题目描述
算法原理
见代码
编写代码
class Solution {
//注意:有8个方向的向量
int dx[8] = {0, 0, 1, -1, 1, -1, 1, -1};
int dy[8] = {1, -1, 0, 0, 1, -1, -1, 1};
int m, n;
public:
vector<vector<char>> updateBoard(vector<vector<char>>& board, vector<int>& click) {
int sr = click[0], sc = click[1];
if(board[sr][sc] == 'M') //点中雷直接返回
{
board[sr][sc] = 'X';
return board;
}
m = board.size(), n = board[0].size();
DFS(board, sr, sc);
return board;
}
void DFS(vector<vector<char>>& board, int r, int c)
{
//统计点击位置周围的地雷数量
int cnt = 0;
for(int i = 0; i < 8; ++i)
{
int x=r+dx[i], y=c+dy[i];
if(x>=0 && x<m && y>=0 && y<n && board[x][y]=='M')
++cnt;
}
if(cnt == 0) //周围没有地雷,向四周继续拓展
{
board[r][c] = 'B';
for(int i = 0; i < 8; ++i)
{
int x=r+dx[i], y=c+dy[i];
if(x>=0 && x<m && y>=0 && y<n && board[x][y]=='E')
DFS(board, x, y);
}
}
else //周围有地雷,标记周围地雷的数量
board[r][c] = cnt+'0';
}
};
2.7 衣橱整理
题目链接
题目描述
算法原理
略
编写代码
class Solution {
int ret;
int _m, _n, _cnt;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
bool visited[100][100];
public:
int wardrobeFinishing(int m, int n, int cnt) {
_m = m, _n = n, _cnt = cnt;
DFS(0, 0);
return ret;
}
void DFS(int r, int c)
{
visited[r][c] = true;
++ret;
for(int i = 0; i < 4; ++i)
{
int x=r+dx[i], y=c+dy[i];
if(x>=0 && x<_m && y>=0 && y<_n && !visited[x][y] && digit(x)+digit(y)<=_cnt)
DFS(x, y);
}
}
int digit(int num)
{
int sum = 0;
while(num > 0)
{
sum+=num%10;
num/=10;
}
return sum;
}
};