最短路径问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 18496 Accepted Submission(s): 5529
Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
(1<n<=1000, 0<m<100000, s != t)
Output
输出 一行有两个数, 最短距离及其花费。
Sample Input
3 2 1 2 5 6 2 3 4 5 1 3 0 0
Sample Output
9 11
Source
参考一个大神的博客:http://blog.csdn.net/gubojun123/article/details/9060475
这就是在普通的最短路Dijkstra算法的基础上,设置了费用。先考虑最短的路,如果满足最短,就考虑价格最少。
#include<iostream>
#include<stdio.h>
#include<string.h>
#define inf 1000000000
#define max 1001
using namespace std;
struct road
{
int length;
int cost;
};
int dis[max];//结点对应的距离
int pp[max];//结点对应的费用
road mat[max][max];
void dijistl(road mat[max][max],int n,int s)
{
int i,j,k;
int mark[max];
memset(mark,0,sizeof(mark));
for(i=0;i<n;i++)
{
dis[i]=mat[s][i].length;
pp[i]=mat[s][i].cost;
}
dis[s]=0;
pp[s]=0;
mark[s]=1;
for(i=1;i<n;i++)
{
int min=inf;
for(j=0;j<n;j++)
{
if(mark[j]==0 && dis[j]<min)
{
min=dis[j];
k=j;
}
}
//if(min==inf) return ;
mark[k]=1;
for(j=0;j<n;j++)
{
if(mark[j]==0 )
{
if(dis[k]+mat[k][j].length<dis[j])
{dis[j]=dis[k]+mat[k][j].length;
pp[j]=pp[k]+mat[k][j].cost;}
else if(dis[k]+mat[k][j].length==dis[j] &&pp[k]+mat[k][j].cost<pp[j])
{
pp[j]=pp[k]+mat[k][j].cost;
}
}
}
}
}
int main()
{
int n,m,i,j,a,b,d,p;
while(scanf("%d%d",&n,&m))
{
if(n==0 && m==0)
break;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
mat[i][j].length=inf;
mat[i][j].cost=inf;
}
}
for(i=0;i<m;i++)
{
scanf("%d%d%d%d",&a,&b,&d,&p);
if(mat[a-1][b-1].length>d) //不知道为什么要分开这样控制...欢迎留言!
{
mat[a-1][b-1].length=mat[b-1][a-1].length=d;
mat[a-1][b-1].cost=mat[b-1][a-1].cost=p;
}
else if(mat[a-1][b-1].length==d && mat[a-1][b-1].cost>p)
mat[a-1][b-1].cost=mat[b-1][a-1].cost=p;
}
scanf("%d%d",&a,&b);
dijistl(mat,n,a-1);
printf("%d %d\n",dis[b-1],pp[b-1]);
}
return 0;
}