最短路径问题

最短路径问题

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 18496 Accepted Submission(s): 5529


Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。

Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)

Output
输出 一行有两个数, 最短距离及其花费。

Sample Input
  
  
3 2 1 2 5 6 2 3 4 5 1 3 0 0

Sample Output
  
  
9 11

Source
参考一个大神的博客:http://blog.csdn.net/gubojun123/article/details/9060475
这就是在普通的最短路Dijkstra算法的基础上,设置了费用。先考虑最短的路,如果满足最短,就考虑价格最少。
#include<iostream>
#include<stdio.h>
#include<string.h>
#define inf 1000000000
#define max 1001
using namespace std;
struct road
{
    int length;
    int cost;
};
int dis[max];//结点对应的距离
int pp[max];//结点对应的费用
road mat[max][max];
void dijistl(road mat[max][max],int n,int s)
{
    int i,j,k;
    int mark[max];
    memset(mark,0,sizeof(mark));
    for(i=0;i<n;i++)
    {
        dis[i]=mat[s][i].length;
        pp[i]=mat[s][i].cost;
    }
    dis[s]=0;
    pp[s]=0;
    mark[s]=1;
    for(i=1;i<n;i++)
    {
        int min=inf;
        for(j=0;j<n;j++)
        {
           if(mark[j]==0 && dis[j]<min) 
           {
               min=dis[j];
               k=j;
           }
        }
        //if(min==inf) return ;
        mark[k]=1;
        for(j=0;j<n;j++)
        {
            if(mark[j]==0 )
            {
                if(dis[k]+mat[k][j].length<dis[j])
                {dis[j]=dis[k]+mat[k][j].length;
                pp[j]=pp[k]+mat[k][j].cost;}
                else if(dis[k]+mat[k][j].length==dis[j] &&pp[k]+mat[k][j].cost<pp[j])
                {
                    pp[j]=pp[k]+mat[k][j].cost;
                }
            }
        
        }
    }
}
int main()
{
    int n,m,i,j,a,b,d,p;
    while(scanf("%d%d",&n,&m))
    {
        if(n==0 && m==0)
            break;
         for(i=0;i<n;i++)
         {
             for(j=0;j<n;j++)
             {
                 mat[i][j].length=inf;
                 mat[i][j].cost=inf;
             }
         }
        for(i=0;i<m;i++)
        {
            scanf("%d%d%d%d",&a,&b,&d,&p); 
            if(mat[a-1][b-1].length>d)     //不知道为什么要分开这样控制...欢迎留言!
            {
                mat[a-1][b-1].length=mat[b-1][a-1].length=d;
                mat[a-1][b-1].cost=mat[b-1][a-1].cost=p;
            }
        else if(mat[a-1][b-1].length==d && mat[a-1][b-1].cost>p)
                mat[a-1][b-1].cost=mat[b-1][a-1].cost=p;
        }
        scanf("%d%d",&a,&b);  
        dijistl(mat,n,a-1);
        printf("%d %d\n",dis[b-1],pp[b-1]);  
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值