stooge排序 效率 说明

今天研究了一下算法导论,很有意思的一本书,至少可以很好的训练人的思维。呵呵。不过被一个课后习题难到了:stooge算法。试着举例来证明一下,不过没有成功。不过找到了一个使用循环不变性(有的人叫循环不变式,不过感觉这种叫法好一些。)证明的。答案如下:

STOOGE-SORT(A, i, j)
1 if A[i] > A[j]
2     then exchange A[i] « A[j]
3 if i+1 ≥ j
4      then return
5 k ¬ ë (j-i+1)/3û     # 下取整
6 STOOGE-SORT(A, i, j-k)    # 前 2/3
7 STOOGE-SORT(A, i+k, j)    # 后 2/3
8 STOOGE-SORT(A, i, j-k)    # 再次前 2/3

这是一个号称很厉害的排序算法。说它厉害并不是因为它有多么的快,事实上它比插入排序还要慢。它的厉害之处在于,用一般的掰手指头的方法绝对无法证明它的正确性。让我们用循环不变式来证明它的正确性。

循环不变式 :在每次 STOOGE-SORT(A, i, j) 返回时,数组 A[i..j] 是有序的。

初    始   化 :当 i+1 ≥ j 时,不再进行递归,函数会立即返回。由于执行了第1、2行,可保证 A[i] ≤ A[j]。因为 i+1=j,所以数组A[i..j]有序。循环不变式成立。

保          持 :假设 STOOGE-SORT(A, i, j) 内部对STOOGE-SORT() 的所有递归调用都满足循环不变式,即STOOGE-SORT(A, i, j-k) 可使 A[i..j-k] 有序,STOOGE-SORT(A, i+k, j) 可使 A[i+k..j] 有序。
∵ k = ë (j-i+1)/3û
∴ j-i+1 ≥ 3k
∴ (j-i+1)-2k ≥ k

∵ A[i..j-k] 与 A[i+k..j] 重叠的部分为 A[i+k..j-k],共(j-k)-(i+k)+1 = (j-k+1) - 2k ≥ k 个元素
     而 A[i..j-k] 与 A[i+k..j] 不重叠的部分为 A[j-k+1..j] 共 j-(j-k+1)+1 = k 个元素。即,A[i..j-k] 与 A[i+k..j] 重叠部分的元素个数大于等于不重叠部分的元素个数。
∴ 在执行了第 6、7 行的STOOGE-SORT(A, i, j-k) 和 STOOGE-SORT(A, i+k, j),分别使A[i..j-k] 和 A[i+k..j]有序后,可保证 A[j-k+1..j] 中的元素是 A[i..j] 中最大的 k 个元素,且是有序的。
∵ 在执行了第8行的STOOGE-SORT(A, i, j-k)后,可保证 A[i..j-k] 有序。
∴ 综上,可保证在 STOOGE-SORT(A, i, j) 返回后,A[i..j] 是有序的。循环不变式成立。

终         止 :在最外层的 STOOGE-SORT(A, 1, n) 返回后,可使数组 A 有序,算法是正确的。

下面说明一下这个算法的复杂性分析

       由上面的伪代码可知:问题每一次被分解,变成一个较小的问题,原问题和子问题之间的关系如下:T(n) = 3T(2n/3) + 1 。由主定理很容易知道他的算法复杂性为:T(n) = O(n^log(3/2, 3))。 很显然log(3/2, 3))>2 ,也就是说这个算法比插入排序的O(n^2) 性能还差。不过《算法导论》的作者有种鄙视他们的意思。呵呵。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值