Young氏矩阵


   一个m x n的Young氏矩阵(Young tableau)是一个m x n的矩阵,其中每一行的数据都从左到右排序,每一列的数据都从上到下排序。Young氏矩阵中可能会有一些∞数据项,表示不存在的元素。所以,Young氏矩阵可以用来存放r≦mn个有限的数。
    a)画一个包含元素{9,6,3,2,4,8,5,14,12}的4 x 4的Young氏矩阵。
    b)讨论一个m x n的Young氏矩阵,如果Y[1,1]=∞,则Y为空;如果Y[m,n]<∞,则Y是满的(包含m x n个元素)。
    c)给出一个在非空m x n的Young氏矩阵上实现EXTRACT-MIN的算法,使其运行时间为O(m+n)。你的算法应该使用一个递归子过程,它通过递归地解决(m-1) x n或m x (n-1)子问题来解决m x n的问题。(提示:考虑一个MAX-HEPIFY。)定义T(p)为EXTRACT-MIN在任何m x n Young氏矩阵上的最大运行时间,其中p=m+n。给出表达T(p)的、界为O(m+n)的递归式,并解该递归式。
    d)说明如何在O(m+n)时间内,将一个新元素插入到一个未满的m x n Young氏矩阵中。
    e)在不用其他排序算法帮助的情况下,说明如何利用n x n Young氏矩阵对n^2个数排序的运行时间为O(n^3)。
    f)给出一个运行时间为O(m+n)的算法,来决定一个给定的数是否在于一个给定的的m x n Young氏矩阵内。

 

分析与解答:

     a)遵循每一行的数据都从左到右排序,每一列的数据都从上到下排序,可以很容易写出一个可能的Young氏矩阵

          2       3       4        5

          6       8       9        12

         14      ∞      ∞       ∞

          ∞      ∞      ∞       ∞

 

     b)Y[1,1]是Young氏矩阵中最小的元素,如果它为∞,说明矩阵中每个元素的值均不小于∞,即每个元素均是∞,所以Y为空;Y[m,n]是Young氏矩阵中最大的元素,如果Y[m,n]<∞,说明矩阵中每个元素均小于∞,即Y是满的

 

     c)采用类似堆中提取最小元素的方法:将Young氏矩阵中最末的元素和第一个元素交换,然后类似MAX-HEAPIFY的方法调整第一个元素,整个过程如下:

 

 

[cpp]  view plain copy
  1. YOUNG-EXTRACT-MIN(A)  
  2. min←A[1,1]  
  3. A[1,1]←A[m,n]  
  4. YOUNG-MIN-HEAPIFY(A, 1, 1)  
  5. return min  
  6. YOUNG-MIN-HEAPIFY(A, i, j)  
  7. if j<n and A[i,j]>A[i,j+1]  
  8.    then (min_i, min_j) = (i, j+1)  
  9.    else (min_i, min_j) = (i, j)  
  10. if i<m and A[min_i, min_j] > A[i+1,j]  
  11.    then (min_i, min_j) = (i+1, j)  
  12.    if min_i≠i or min_j≠j  
  13.    then exchange A[i,j]↔A[min_i,min_j]  
  14.         YOUNG-MIN-HEAPIFY(A,min_i,min_j  

 

而YOUNG-MIN-HEPIFY是一个递归过程。YOUNG-MIN-HEAPIFY(A, m, n)会和它紧邻的结点比较,要么调用YOUNG-MIN-HEAPIFY(A, m, n-1),要么调用YOUNG-MIN-HEAPIFY(A, m-1, n)。若令p=m+n,则有:

     T(p)= T(p-1)+O(1)

则总的运行时间为O(p),即为O(m+n)

 

   d)采用类似堆中增加元素的方法,先将∞放在Young矩阵的末尾,然后采用类似INCREASE-KEY的方法,向上调整

 

 

[cpp]  view plain copy
  1. YOUNG-ISNERT(A, key)  
  2. (m, n) ← size(A)  
  3. if A[m,n]<∞  
  4.    then error " YOUNG matrix overflow"  
  5. A[m, n]←∞  
  6. YOUNG-DECREASE-KEY(A, m, n, key)  
  7. YOUNG-DECREASE-KEY(A, i, j, key)  
  8. if j>1 and A[i,j] < A[i,j-1]  
  9.    then (max_i, max_j) = (i, j-1)  
  10.    else (max_i, max_j) = (i, j)  
  11. if i>1 and A[max_i, max_j] > A[i-1,j]  
  12.     then (max_i, max_j) = (i-1, j)  
  13. if max_i≠i or max_j≠j  
  14.    then exchange A[i,j]↔A[max_i,max_j]  
  15.       YOUNG-DECREASE-KEY(A,max_i,max_j)  
 

 


类似于上面的分析,若令p=m+n,则有:

     T(p)= T(p-1)+O(1)

则总的运行时间为O(p),即为O(m+n)

 

    e)每次提取其中的最小元素,调用YOUNG-EXTRACT-MIN,共需调用n  x n次,而每次YOUNG-EXTRACT-MIN需要O(n+n)运行时间,故总的运行时间为O(n^3)

 

   f)每次与最右上角的元素X相比:如果等于X,则找到了;如果小于X,则去掉最上面一行;如果大于X,则去掉最右边一行。

每次比较去掉一行或一列,则该算法的运行时间为O(m+n)

 

[cpp]  view plain copy
  1. YOUNG-SEARCH(A, i, j, m, n, key) //(i,j) and (m,n) was the coordinate of the left-top and the right-bottom of the sub YOUNG matrix  
  2. if i>m or j>n  
  3.    then error "can't find the key"  
  4. if A[i,n]==key  
  5.    then return (i,n)  
  6.    else if max_A[i,n]<key  
  7.         then YOUNG-SEARCH(i+1, j, m, n, key)  
  8.         else  YOUNG-SEARCH(i, j, m , n-1, key) 

Koh Young AOI(自动光学检测)参数是指Koh Young公司推出的自动光学检测设备的一些特定参数和功能。Koh Young AOI被广泛应用于电子制造业,用于检测PCB(Printed Circuit Board,印刷电路板)上的焊接问题和缺陷。 首先,Koh Young AOI参数中的一个重要指标是分辨率。这一参数表示Koh Young AOI设备能够检测到的最小细节或缺陷的大小。较高的分辨率通常意味着设备可以更准确地检测到更小的问题,提高产品的质量。 其次,Koh Young AOI还可以根据需要调整焦距。焦距的调整可以使设备适应不同尺寸和形状的PCB,以及不同焊接工艺的要求。这种灵活性使得Koh Young AOI可以在不同的生产环境中被广泛应用。 此外,Koh Young AOI还提供了先进的光源技术,如多角度照明和调焦照明。这些技术可以从不同的角度和方向对PCB进行照明,以提高检测的准确性和可靠性。通过使用多角度照明和调焦照明,Koh Young AOI可以更好地检测到锡球、焊接缺陷和其他细微问题,从而避免可能的后续故障。 最后,Koh Young AOI还具备先进的算法和图像处理技术。这些技术可以实时分析和处理从PCB上获取的图像数据,将其与预先定义的标准进行比较,并自动检测和分类不合格的零部件或缺陷。这样,Koh Young AOI可以提高生产效率,减少人工错误的发生,并减少产品的不良率。 总结而言,Koh Young AOI参数包括分辨率、焦距调整、先进的光源技术和图像处理技术。它们共同构成了Koh Young AOI设备的强大功能,可以在电子制造业中有效检测和预防PCB上的焊接问题和缺陷,提高产品质量和生产效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值