数组中超过出现一半的数字

这篇博客讨论了一种寻找数组中出现次数超过一半的数字的算法问题。作者首先介绍了朴素的O(n^2)解决方案,然后提出了一种优化的O(n)算法,通过增加和减少计数来跟踪可能的众数。最后,作者反思了这个问题,并指出使用哈希表可能的解决方案,但未给出具体实现。文章强调了算法的时间复杂度和空间复杂度分析。
摘要由CSDN通过智能技术生成

一、题目描述
数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}。由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2。如果不存在则输出0。
示例1
输入
[1,2,3,2,2,2,5,4,2]
返回值
2
二、思路
这道题,很容易想到是变异版的众数问题,解决众数问题有很多办法,首先一个办法,就是把每个位置在数组中出现的次数统计出来,找出最大值,然后输出其对应的值。下面的代码,我在两层for循环地方用了一个小技巧,就是第二层for循环,从i开始,这样就避免同一个值的多次统计。

class Solution {
public:
    int MoreThanHalfNum_Solution(vector<int> numbers) {
           int count=0,val=0;
        int n=numbers.size();
        for(int i=0;i<n;i++){
            count=0;
            for(int j=i;j<n;j++){
                if(numbers[i]==numbers[j]){
                    count++;
                }
            }
            if(count>n/2)
                return numbers[i];
        }
            return 0;
    }
};

三、复杂度分析
可以知道,用两层for循环的时间复杂度为O(n^2),空间复杂度为O(1),时间负责度很大,因此寻找改进的方法,如下面的代码,因为找的是超过一半以上的众数,因此,用出现相同就加,不同就减,减到0就换换一个数,继续相同的操作,知道,数组遍历结束。如果有超过一半的数存在,那么一定会作为最后一个数输出,但是,最后一个数输出不一定是超过一半的众数,因此,还要遍历判断。
这里的时间复杂度为O(n),空间复杂度为O(1)。

class Solution {
public:
    int MoreThanHalfNum_Solution(vector<int> numbers) {
           int count=1,val=numbers[0];
        int n=numbers.size();
        for(int i=1;i<n;i++){
                if(val==numbers[i]){
                    count++;
                }
                else{
                    count--;
                    if(count==0){
                        val=numbers[i];
                        count++;
                    }
            }
        }
       int num=0;
        for(int i=0;i<n;i++){
            if(val==numbers[i])
                num++;
        }
        return num>n/2?val:0;
    }
};

四、反思
本题要求用哈希表的方法,我没有找到如何做。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值