一、题目描述
数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}。由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2。如果不存在则输出0。
示例1
输入
[1,2,3,2,2,2,5,4,2]
返回值
2
二、思路
这道题,很容易想到是变异版的众数问题,解决众数问题有很多办法,首先一个办法,就是把每个位置在数组中出现的次数统计出来,找出最大值,然后输出其对应的值。下面的代码,我在两层for循环地方用了一个小技巧,就是第二层for循环,从i开始,这样就避免同一个值的多次统计。
class Solution {
public:
int MoreThanHalfNum_Solution(vector<int> numbers) {
int count=0,val=0;
int n=numbers.size();
for(int i=0;i<n;i++){
count=0;
for(int j=i;j<n;j++){
if(numbers[i]==numbers[j]){
count++;
}
}
if(count>n/2)
return numbers[i];
}
return 0;
}
};
三、复杂度分析
可以知道,用两层for循环的时间复杂度为O(n^2),空间复杂度为O(1),时间负责度很大,因此寻找改进的方法,如下面的代码,因为找的是超过一半以上的众数,因此,用出现相同就加,不同就减,减到0就换换一个数,继续相同的操作,知道,数组遍历结束。如果有超过一半的数存在,那么一定会作为最后一个数输出,但是,最后一个数输出不一定是超过一半的众数,因此,还要遍历判断。
这里的时间复杂度为O(n),空间复杂度为O(1)。
class Solution {
public:
int MoreThanHalfNum_Solution(vector<int> numbers) {
int count=1,val=numbers[0];
int n=numbers.size();
for(int i=1;i<n;i++){
if(val==numbers[i]){
count++;
}
else{
count--;
if(count==0){
val=numbers[i];
count++;
}
}
}
int num=0;
for(int i=0;i<n;i++){
if(val==numbers[i])
num++;
}
return num>n/2?val:0;
}
};
四、反思
本题要求用哈希表的方法,我没有找到如何做。