mongodb Profiling 通过慢查询日志分析查询慢的原因 相应优化

https://blog.csdn.net/yisun123456/article/details/78274477

 

在MySQL中,慢查询日志是经常作为我们优化查询的依据,那在MongoDB中是否有类似的功能呢?答案是肯定的,那就是开启Profiling功能。该工具在运行的实例上收集有关MongoDB的写操作,游标,数据库命令等,可以在数据库级别开启该工具,也可以在实例级别开启。该工具会把收集到的所有都写入到system.profile集合中,该集合是一个capped collection。更多的信息见:http://docs.mongodb.org/manual/tutorial/manage-the-database-profiler/

  1  慢查询分析流程

 

   慢查询日志一般作为优化步骤里的第一步。通过慢查询日志,定位每一条语句的查询时间。比如超过了200ms,那么查询超过200ms的语句需要优化。然后它通过 .explain() 解析影响行数是不是过大,所以导致查询语句超过200ms。

   所以优化步骤一般就是:

    1.用慢查询日志(system.profile)找到超过200ms的语句

    2.然后再通过.explain()解析影响行数,分析为什么超过200ms 

    3.决定是不是需要添加索引

  2  开启慢查询

2.1  Profiling级别说明

1

2

3

0:关闭,不收集任何数据。

1:收集慢查询数据,默认是100毫秒。

2:收集所有数据

2.2  开启Profiling和设置

1:通过mongo shell:

   需要进入server 

   mongo 而不是路由器mongoos

1

2

3

4

5

6

7

8

9

10

11

12

#查看状态:级别和时间

PRIMARY> db.getProfilingStatus()

"was" : 1, "slowms" : 200 }

#查看级别

PRIMARY> db.getProfilingLevel()

1

#设置级别

PRIMARY> db.setProfilingLevel(2)

"was" : 1, "slowms" : 100, "ok" : 1 }

#设置级别和时间

PRIMARY> db.setProfilingLevel(1,200)

"was" : 2, "slowms" : 100, "ok" : 1 }

注意:

  1  以上要操作要是在test集合下面的话,只对该集合里的操作有效,要是需要对整个实例有效,则需要在所有的集合下设置或则在开启的时候开启参数

  2 每次设置之后返回给你的结果是修改之前的状态(包括级别、时间参数)。

 

2:不通过mongo shell:

在mongoDB启动的时候

1

mongod --profile=1  --slowms=200

或则在配置文件里添加2行:

1

2

profile = 1

slowms = 200

3:关闭Profiling

1

2

3

# 关闭

PRIMARY> db.setProfilingLevel(0)

"was" : 1, "slowms" : 200, "ok" : 1 }

4:修改“慢查询日志”的大小

1

2

3

4

5

6

7

8

9

10

11

12

#关闭Profiling

PRIMARY> db.setProfilingLevel(0)

"was" : 0, "slowms" : 200, "ok" : 1 }

#删除system.profile集合

PRIMARY> db.system.profile.drop()

true

#创建一个新的system.profile集合 --- 4M

PRIMARY> db.createCollection( "system.profile", { capped: true, size:4000000 } )

"ok" : 1 }

#重新开启Profiling

PRIMARY> db.setProfilingLevel(1)

"was" : 0, "slowms" : 200, "ok" : 1 }

注意:要改变Secondary的system.profile的大小,你必须停止Secondary,运行它作为一个独立的mongodb,然后再执行上述步骤。完成后,重新启动加入副本集。

 

  2.3  Profile 效率

  Profiling功能肯定是会影响效率的,但是不太严重,原因是他使用的是system.profile 来记录,而system.profile 是一个capped collection, 这种collection 在操作上有一些限制和特点,但是效率更高。

3   慢查询(system.profile)分析

通过 db.system.profile.find() 查看当前所有的慢查询日志,下面的例子说明各个参数的含义,更多信息见:http://docs.mongodb.org/manual/reference /database-profiler/

 3.1:参数含义  -- (这是一个query 类型的 慢查询)

{
	"op" : "query",  #操作类型,有insert、query、update、remove、getmore、command   
	"ns" : "onroad.route_model", #操作的集合
	"query" : {
		"$query" : {
			"user_id" : 314436841,
			"data_time" : {
				"$gte" : 1436198400
			}
		},
		"$orderby" : {
			"data_time" : 1
		}
	},
	"ntoskip" : 0, #指定跳过skip()方法 的文档的数量。
	"nscanned" : 2, #为了执行该操作,MongoDB在 index 中浏览的文档数。 一般来说,如果 nscanned 值高于 nreturned 的值,说明数据库为了找到目标文档扫描了很多文档。这时可以考虑创建索引来提高效率。
	"nscannedObjects" : 1,  #为了执行该操作,MongoDB在 collection中浏览的文档数。
	"keyUpdates" : 0, #索引更新的数量,改变一个索引键带有一个小的性能开销,因为数据库必须删除旧的key,并插入一个新的key到B-树索引
	"numYield" : 1,  #该操作为了使其他操作完成而放弃的次数。通常来说,当他们需要访问还没有完全读入内存中的数据时,操作将放弃。这使得在MongoDB为了放弃操作进行数据读取的同时,还有数据在内存中的其他操作可以完成
	"lockStats" : {  #锁信息,R:全局读锁;W:全局写锁;r:特定数据库的读锁;w:特定数据库的写锁
		"timeLockedMicros" : {  #该操作获取一个级锁花费的时间。对于请求多个锁的操作,比如对 local 数据库锁来更新 oplog ,该值比该操作的总长要长(即 millis )
			"r" : NumberLong(1089485),
			"w" : NumberLong(0)
		},
		"timeAcquiringMicros" : {  #该操作等待获取一个级锁花费的时间。
			"r" : NumberLong(102),
			"w" : NumberLong(2)
		}
	},
	"nreturned" : 1,  // 返回的文档数量
	"responseLength" : 1669, // 返回字节长度,如果这个数字很大,考虑值返回所需字段
	"millis" : 544, #消耗的时间(毫秒)
	"execStats" : {  #一个文档,其中包含执行 查询 的操作,对于其他操作,这个值是一个空文件, system.profile.execStats 显示了就像树一样的统计结构,每个节点提供了在执行阶段的查询操作情况。
		"type" : "LIMIT", ##使用limit限制返回数  
		"works" : 2,
		"yields" : 1,
		"unyields" : 1,
		"invalidates" : 0,
		"advanced" : 1,
		"needTime" : 0,
		"needFetch" : 0,
		"isEOF" : 1,  #是否为文件结束符
		"children" : [
			{
				"type" : "FETCH",  #根据索引去检索指定document
				"works" : 1,
				"yields" : 1,
				"unyields" : 1,
				"invalidates" : 0,
				"advanced" : 1,
				"needTime" : 0,
				"needFetch" : 0,
				"isEOF" : 0,
				"alreadyHasObj" : 0,
				"forcedFetches" : 0,
				"matchTested" : 0,
				"children" : [
					{
						"type" : "IXSCAN", #扫描索引键
						"works" : 1,
						"yields" : 1,
						"unyields" : 1,
						"invalidates" : 0,
						"advanced" : 1,
						"needTime" : 0,
						"needFetch" : 0,
						"isEOF" : 0,
						"keyPattern" : "{ user_id: 1.0, data_time: -1.0 }",
						"boundsVerbose" : "field #0['user_id']: [314436841, 314436841], field #1['data_time']: [1436198400, inf.0]",
						"isMultiKey" : 0,
						"yieldMovedCursor" : 0,
						"dupsTested" : 0,
						"dupsDropped" : 0,
						"seenInvalidated" : 0,
						"matchTested" : 0,
						"keysExamined" : 2,
						"children" : [ ]
					}
				]
			}
		]
	},
	"ts" : ISODate("2015-10-15T07:41:03.061Z"), #该命令在何时执行
	"client" : "10.10.86.171", #链接ip或则主机
	"allUsers" : [
		{
			"user" : "martin_v8",
			"db" : "onroad"
		}
	],
	"user" : "martin_v8@onroad"
}

 

 

 3.2: 分析

如果发现 millis 值比较大,那么就需要作优化。

1  如果nscanned数很大,或者接近记录总数(文档数),那么可能没有用到索引查询,而是全表扫描。

2  如果 nscanned 值高于 nreturned 的值,说明数据库为了找到目标文档扫描了很多文档。这时可以考虑创建索引来提高效率。

 3.3  system.profile补充

‘type’的返回参数说明:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

COLLSCAN #全表扫描

IXSCAN #索引扫描

FETCH #根据索引去检索指定document

SHARD_MERGE #将各个分片返回数据进行merge

SORT #表明在内存中进行了排序(与老版本的scanAndOrder:true一致)

LIMIT #使用limit限制返回数

SKIP #使用skip进行跳过

IDHACK #针对_id进行查询

SHARDING_FILTER #通过mongos对分片数据进行查询

COUNT #利用db.coll.explain().count()之类进行count运算

COUNTSCAN #count不使用Index进行count时的stage返回

COUNT_SCAN #count使用了Index进行count时的stage返回

SUBPLA #未使用到索引的$or查询的stage返回

TEXT #使用全文索引进行查询时候的stage返回

PROJECTION #限定返回字段时候stage的返回

对于普通查询,我们最希望看到的组合有这些:

1

2

3

4

5

6

Fetch+IDHACK

Fetch+ixscan

Limit+(Fetch+ixscan)

PROJECTION+ixscan

SHARDING_FILTER+ixscan

不希望看到包含如下的type:

1

COLLSCAN(全表扫),SORT(使用sort但是无index),不合理的SKIP,SUBPLA(未用到index的$or)

对于count查询,希望看到的有:

1

COUNT_SCAN

不希望看到的有:

1

COUNTSCAN

 

4  性能(explain)分析

 

SECONDARY> db.route_model.find({ "user_id" : 313830621, "data_time" : { "$lte" : 1443715200, "$gte" : 1443542400 } }).explain()
{
	"cursor" : "BtreeCursor user_id_1_data_time_-1",  #返回游标类型,有BasicCursor和BtreeCursor,后者意味着使用了索引。
	"isMultiKey" : false,
	"n" : 23, #返回的文档行数。
	"nscannedObjects" : 23,  #这是MongoDB按照索引指针去磁盘上查找实际文档的次数。如果查询包含的查询条件不是索引的一部分,或者说要求返回不在索引内的字段,MongoDB就必须依次查找每个索引条目指向的文档。
	"nscanned" : 23,  #如果有使用索引,那么这个数字就是查找过的索引条目数量,如果本次查询是一次全表扫描,那么这个数字就代表检查过的文档数目
	"nscannedObjectsAllPlans" : 46,
	"nscannedAllPlans" : 46,
	"scanAndOrder" : false,  #MongoDB是否在内存中对结果集进行了排序
	"indexOnly" : false, #MongoDB是否只使用索引就能完成此次查询
	"nYields" : 1,  #为了让写入请求能够顺利执行,本次查询暂停暂停的次数。如果有写入请求需求处理,查询会周期性的释放他们的锁,以便写入能够顺利执行
	"nChunkSkips" : 0,
	"millis" : 1530,  #数据库执行本次查询所耗费的毫秒数。这个数字越小,说明效率越高
	"indexBounds" : {  #这个字段描述了索引的使用情况,给出了索引的遍历范围
		"user_id" : [
			[
				313830621,
				313830621
			]
		],
		"data_time" : [
			[
				1443715200,
				1443542400
			]
		]
	},
	"server" : "a7cecd4f9295:27017",
	"filterSet" : false,
	"stats" : {
		"type" : "FETCH",
		"works" : 25,
		"yields" : 1,
		"unyields" : 1,
		"invalidates" : 0,
		"advanced" : 23,
		"needTime" : 0,
		"needFetch" : 0,
		"isEOF" : 1,
		"alreadyHasObj" : 0,
		"forcedFetches" : 0,
		"matchTested" : 0,
		"children" : [
			{
				"type" : "IXSCAN",#这里使用了索引
				"works" : 23,
				"yields" : 1,
				"unyields" : 1,
				"invalidates" : 0,
				"advanced" : 23,
				"needTime" : 0,
				"needFetch" : 0,
				"isEOF" : 1,
				"keyPattern" : "{ user_id: 1.0, data_time: -1.0 }",
				"boundsVerbose" : "field #0['user_id']: [313830621.0, 313830621.0], field #1['data_time']: [1443715200.0, 1443542400.0]",
				"isMultiKey" : 0,
				"yieldMovedCursor" : 0,
				"dupsTested" : 0,
				"dupsDropped" : 0,
				"seenInvalidated" : 0,
				"matchTested" : 0,
				"keysExamined" : 23,
				"children" : [ ]
			}
		]
	}
}

详细解释 : https://docs.mongodb.org/manual/reference/database-profiler/

这里的分析类似于 system.profile 

5  日常使用的慢日志(system.profile)查询

 

#返回最近的10条记录

1

db.system.profile.find().limit(10).sort({ ts : -1 }).pretty()

#返回所有的操作,除command类型的

1

db.system.profile.find( { op: { $ne : ‘command‘ } }).pretty()

#返回特定集合

1

db.system.profile.find( { ns : ‘mydb.test‘ } ).pretty()

#返回大于5毫秒慢的操作

1

db.system.profile.find({ millis : { $gt : 5 } } ).pretty()

#从一个特定的时间范围内返回信息

1

2

3

4

5

6

7

8

db.system.profile.find(

                      {

                       ts : {

                             $gt : new ISODate("2015-10-18T03:00:00Z"),

                             $lt : new ISODate("2015-10-19T03:40:00Z")

                            }

                      }

                     ).pretty()

#特定时间,限制用户,按照消耗时间排序

1

2

3

4

5

6

7

8

9

db.system.profile.find(

                      {

                        ts : {

                              $gt : newISODate("2015-10-12T03:00:00Z") ,

                              $lt : newISODate("2015-10-12T03:40:00Z")

                             }

                      },

                      { user : 0 }

                     ).sort( { millis : -1 } )

#查看最新的 Profile  记录: 

1

db.system.profile.find().sort({$natural:-1}).limit(1)

# 显示5个最近的事件

1

show profile

6  对慢查询语句建索引

     详细请见下一篇博文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值