结点是数据结构中的基础,是构成复杂数据结构的基本组成单位。
1.树
树(Tree)是n(n>=0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:
1)有且仅有一个特定的称为根(Root)的结点;
2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、......、Tn,其中每一个集合本身又是一棵树,并且称为根的子树。
此外,树的定义还需要强调以下两点:
1)n>0时根结点是唯一的,不可能存在多个根结点,数据结构中的树只能有一个根结点。
2)m>0时,子树的个数没有限制,但它们一定是互不相交的。
示例树:
图为一棵普通的树:
1.1 节点的度
一个节点含有的子树的个数称为该节点的度
1.2 结点关系
结点子树的根结点为该结点的孩子结点。相应该结点称为孩子结点的双亲结点。
上图中,A为B的双亲结点,B为A的孩子结点。
同一个双亲结点的孩子结点之间互称兄弟结点。
上图中,结点B与结点C互为兄弟结点。
1.3 结点层次
从根开始定义起,根为第一层,根的孩子为第二层,以此类推。
1.4 树的深度
树中结点的最大层次数称为树的深度或高度。上图所示树的深度为4。
2 二叉树
2.1.定义
二叉树是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成。
下图展示了一棵普通二叉树:
2.2 二叉树特点
由二叉树定义以及图示分析得出二叉树有以下特点:
- 每个结点最多有两颗子树,所以二叉树中不存在度大于2的结点。
- 左子树和右子树是有顺序的,次序不能任意颠倒。
- 即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。
2.3 二叉树性质
2.4 斜树
斜树:所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。


2.5 满二叉树
满二叉树:在一棵二叉树中。如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
满二叉树的特点有:
1)叶子只能出现在最下一层。出现在其它层就不可能达成平衡。
2)非叶子结点的度一定是2。
3)在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多。
2.6 完全二叉树
完全二叉树:对一颗具有n个结点的二叉树按层编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。
下图展示一棵完全二叉树
特点:
1)叶子结点只能出现在最下层和次下层。
2)最下层的叶子结点集中在树的左部。
3)倒数第二层若存在叶子结点,一定在右部连续位置。
4)如果结点度为1,则该结点只有左孩子,即没有右子树。
5)同样结点数目的二叉树,完全二叉树深度最小。
注:满二叉树一定是完全二叉树,但反过来不一定成立。
2.7 二叉树的遍历
二叉树的遍历是指从二叉树的根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次,且仅被访问一次。
二叉树的访问次序可以分为四种:
前序遍历
中序遍历
后序遍历
层序遍历
- 前序递归遍历算法:访问根结点-->递归遍历根结点的左子树-->递归遍历根结点的右子树
- 中序递归遍历算法:递归遍历根结点的左子树-->访问根结点-->递归遍历根结点的右子树
- 后序递归遍历算法:递归遍历根结点的左子树-->递归遍历根结点的右子树-->访问根结点
现有一颗如下图所示的二叉树:
- 前序遍历:先访问根节点,再访问左子节点,最后访问右子节点。上图中的二叉树的前序遍历的顺序是1,2,4,5,8,9,10,3,6,7
- 中序遍历:先访问左子节点,再访问根节点,最后访问右子节点。上图中的二叉树的中序遍历的顺序是4,2,8,5,9,10,1,6,3,7
- 后序遍历:先访问左子节点,再访问右子节点,最后访问根节点,上图中的二叉树的后序遍历的顺序是4,8,10,9,5,2,6,7,3,1
二叉树节点的定义:
package com.wedoctor;
public class BinaryTreeNode {
int data;
BinaryTreeNode left;
BinaryTreeNode right;
BinaryTreeNode (int x) {
data= x;
}
public BinaryTreeNode(int data, BinaryTreeNode left, BinaryTreeNode right) {
this.data = data;
this.left = left;
this.right = right;
}
public int getData() {
return data;
}
public void setData(int data) {
this.data = data;
}
public BinaryTreeNode getLeft() {
return left;
}
public void setLeft(BinaryTreeNode left) {
this.left = left;
}
public BinaryTreeNode getRight() {
return right;
}
public void setRight(BinaryTreeNode right) {
this.right = right;
}
}
遍历实现代码:
package com.wedoctor;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;
public class BinaryTree {
public static void main(String[] args) {
BinaryTreeNode node10=new BinaryTreeNode(10,null,null);
BinaryTreeNode node8=new BinaryTreeNode(8,null,null);
BinaryTreeNode node9=new BinaryTreeNode(9,null,node10);
BinaryTreeNode node4=new BinaryTreeNode(4,null,null);
BinaryTreeNode node5=new BinaryTreeNode(5,node8,node9);
BinaryTreeNode node6=new BinaryTreeNode(6,null,null);
BinaryTreeNode node7=new BinaryTreeNode(7,null,null);
BinaryTreeNode node2=new BinaryTreeNode(2,node4,node5);
BinaryTreeNode node3=new BinaryTreeNode(3,node6,node7);
BinaryTreeNode node1=new BinaryTreeNode(1,node2,node3);
BinaryTree tree=new BinaryTree();
/**
* 前序遍历
*/
//采用递归的方式进行遍历
System.out.println("-----前序遍历------");
tree.preOrder(node1);
//采用非递归的方式遍历
tree.preOrderNonRecursive(node1);
/**
* 中序遍历
*/
//采用递归的方式进行遍历
System.out.println("-----中序遍历------");
tree.inOrder(node1);
//采用非递归的方式遍历
tree.inOrderNonRecursive(node1);
/**
* 后序遍历
*/
//采用递归的方式进行遍历
System.out.println("-----后序遍历------");
tree.postOrder(node1);
//采用非递归的方式遍历
tree.postOrderNonRecursive(node1);
/**
* 层序遍历
*/
//采用递归的方式进行遍历
System.out.println("-----层序遍历------");
tree.levelOrder(node1);
}
//前序遍历递归的方式
public void preOrder(BinaryTreeNode root){
if(null!=root){
System.out.print(root.getData()+"\t");
preOrder(root.getLeft());
preOrder(root.getRight());
}
}
//中序遍历采用递归的方式
public void inOrder(BinaryTreeNode root){
if(null!=root){
inOrder(root.getLeft());
System.out.print(root.getData()+"\t");
inOrder(root.getRight());
}
}
//后序遍历采用递归的方式
public void postOrder(BinaryTreeNode root){
if(root!=null){
postOrder(root.getLeft());
postOrder(root.getRight());
System.out.print(root.getData()+"\t");
}
}
//前序遍历非递归的方式
public void preOrderNonRecursive(BinaryTreeNode root){
Stack<BinaryTreeNode> stack=new Stack<BinaryTreeNode>();
while(true){
while(root!=null){
System.out.print(root.getData()+"\t");
stack.push(root);
root=root.getLeft();
}
if(stack.isEmpty()) break;
root=stack.pop();
root=root.getRight();
}
}
//中序遍历采用非递归的方式
public void inOrderNonRecursive(BinaryTreeNode root){
Stack<BinaryTreeNode> stack=new Stack<BinaryTreeNode>();
while(true){
while(root!=null){
stack.push(root);
root=root.getLeft();
}
if(stack.isEmpty())break;
root=stack.pop();
System.out.print(root.getData()+"\t");
root=root.getRight();
}
}
//后序遍历采用非递归的方式
public void postOrderNonRecursive(BinaryTreeNode root){
Stack<BinaryTreeNode> stack=new Stack<BinaryTreeNode>();
while(true){
if(root!=null){
stack.push(root);
root=root.getLeft();
}else{
if(stack.isEmpty()) return;
if(null==stack.lastElement().getRight()){
root=stack.pop();
System.out.print(root.getData()+"\t");
while(root==stack.lastElement().getRight()){
System.out.print(stack.lastElement().getData()+"\t");
root=stack.pop();
if(stack.isEmpty()){
break;
}
}
}
if(!stack.isEmpty())
root=stack.lastElement().getRight();
else
root=null;
}
}
}
//层序遍历
public void levelOrder(BinaryTreeNode root) {
BinaryTreeNode temp;
Queue<BinaryTreeNode> queue = new LinkedList<BinaryTreeNode>();
queue.offer(root);
while (!queue.isEmpty()) {
temp = queue.poll();
System.out.print(temp.getData() + "\t");
if (null != temp.getLeft())
queue.offer(temp.getLeft());
if (null != temp.getRight()) {
queue.offer(temp.getRight());
}
}
}
}