/**
* C: Dijkstra算法获取最短路径(邻接表)
*
* @author skywang
* @date 2014/04/24
*/
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
#define MAX 100
#define INF (~(0x1<<31)) // 最大值(即0X7FFFFFFF)
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a) (sizeof(a)/sizeof(a[0]))
// 邻接表中表对应的链表的顶点
typedef struct _ENode
{
int ivex; // 该边的顶点的位置
int weight; // 该边的权
struct _ENode *next_edge; // 指向下一条弧的指针
}ENode, *PENode;
// 邻接表中表的顶点
typedef struct _VNode
{
char data; // 顶点信息
ENode *first_edge; // 指向第一条依附该顶点的弧
}VNode;
// 邻接表
typedef struct _LGraph
{
int vexnum; // 图的顶点的数目
int edgnum; // 图的边的数目
VNode vexs[MAX];
}LGraph;
/*
* 返回ch在matrix矩阵中的位置
*/
static int get_position(LGraph G, char ch)
{
int i;
for(i=0; i<G.vexnum; i++)
if(G.vexs[i].data==ch)
return i;
return -1;
}
/*
* 读取一个输入字符
*/
static char read_char()
{
char ch;
do {
ch = getchar();
} while(!isLetter(ch));
return ch;
}
/*
* 将node链接到list的末尾
*/
static void link_last(ENode *list, ENode *node)
{
ENode *p = list;
while(p->next_edge)
p = p->next_edge;
p->next_edge = node;
}
/*
* 创建邻接表对应的图(自己输入)
*/
LGraph* create_lgraph()
{
char c1, c2;
int v, e;
int i, p1, p2;
int weight;
ENode *node1, *node2;
LGraph* pG;
// 输入"顶点数"和"边数"
printf("input vertex number: ");
scanf("%d", &v);
printf("input edge number: ");
scanf("%d", &e);
if ( v < 1 || e < 1 || (e > (v * (v-1))))
{
printf("input error: invalid parameters!\n");
return NULL;
}
if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
return NULL;
memset(pG, 0, sizeof(LGraph));
// 初始化"顶点数"和"边数"
pG->vexnum = v;
pG->edgnum = e;
// 初始化"邻接表"的顶点
for(i=0; i<pG->vexnum; i++)
{
printf("vertex(%d): ", i);
pG->vexs[i].data = read_char();
pG->vexs[i].first_edge = NULL;
}
// 初始化"邻接表"的边
for(i=0; i<pG->edgnum; i++)
{
// 读取边的起始顶点,结束顶点,权
printf("edge(%d): ", i);
c1 = read_char();
c2 = read_char();
scanf("%d", &weight);
p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2);
// 初始化node1
node1 = (ENode*)malloc(sizeof(ENode));
node1->ivex = p2;
node1->weight = weight;
// 将node1链接到"p1所在链表的末尾"
if(pG->vexs[p1].first_edge == NULL)
pG->vexs[p1].first_edge = node1;
else
link_last(pG->vexs[p1].first_edge, node1);
// 初始化node2
node2 = (ENode*)malloc(sizeof(ENode));
node2->ivex = p1;
node2->weight = weight;
// 将node2链接到"p2所在链表的末尾"
if(pG->vexs[p2].first_edge == NULL)
pG->vexs[p2].first_edge = node2;
else
link_last(pG->vexs[p2].first_edge, node2);
}
return pG;
}
// 边的结构体
typedef struct _edata
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;
// 顶点
static char gVexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
// 边
static EData gEdges[] = {
// 起点 终点 权
{'A', 'B', 12},
{'A', 'F', 16},
{'A', 'G', 14},
{'B', 'C', 10},
{'B', 'F', 7},
{'C', 'D', 3},
{'C', 'E', 5},
{'C', 'F', 6},
{'D', 'E', 4},
{'E', 'F', 2},
{'E', 'G', 8},
{'F', 'G', 9},
};
/*
* 创建邻接表对应的图(用已提供的数据)
*/
LGraph* create_example_lgraph()
{
char c1, c2;
int vlen = LENGTH(gVexs);
int elen = LENGTH(gEdges);
int i, p1, p2;
int weight;
ENode *node1, *node2;
LGraph* pG;
if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
return NULL;
memset(pG, 0, sizeof(LGraph));
// 初始化"顶点数"和"边数"
pG->vexnum = vlen;
pG->edgnum = elen;
// 初始化"邻接表"的顶点
for(i=0; i<pG->vexnum; i++)
{
pG->vexs[i].data = gVexs[i];
pG->vexs[i].first_edge = NULL;
}
// 初始化"邻接表"的边
for(i=0; i<pG->edgnum; i++)
{
// 读取边的起始顶点,结束顶点,权
c1 = gEdges[i].start;
c2 = gEdges[i].end;
weight = gEdges[i].weight;
p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2);
// 初始化node1
node1 = (ENode*)malloc(sizeof(ENode));
node1->ivex = p2;
node1->weight = weight;
// 将node1链接到"p1所在链表的末尾"
if(pG->vexs[p1].first_edge == NULL)
pG->vexs[p1].first_edge = node1;
else
link_last(pG->vexs[p1].first_edge, node1);
// 初始化node2
node2 = (ENode*)malloc(sizeof(ENode));
node2->ivex = p1;
node2->weight = weight;
// 将node2链接到"p2所在链表的末尾"
if(pG->vexs[p2].first_edge == NULL)
pG->vexs[p2].first_edge = node2;
else
link_last(pG->vexs[p2].first_edge, node2);
}
return pG;
}
/*
* 深度优先搜索遍历图的递归实现
*/
static void DFS(LGraph G, int i, int *visited)
{
int w;
ENode *node;
visited[i] = 1;
printf("%c ", G.vexs[i].data);
node = G.vexs[i].first_edge;
while (node != NULL)
{
if (!visited[node->ivex])
DFS(G, node->ivex, visited);
node = node->next_edge;
}
}
/*
* 深度优先搜索遍历图
*/
void DFSTraverse(LGraph G)
{
int i;
int visited[MAX]; // 顶点访问标记
// 初始化所有顶点都没有被访问
for (i = 0; i < G.vexnum; i++)
visited[i] = 0;
printf("DFS: ");
for (i = 0; i < G.vexnum; i++)
{
if (!visited[i])
DFS(G, i, visited);
}
printf("\n");
}
/*
* 广度优先搜索(类似于树的层次遍历)
*/
void BFS(LGraph G)
{
int head = 0;
int rear = 0;
int queue[MAX]; // 辅组队列
int visited[MAX]; // 顶点访问标记
int i, j, k;
ENode *node;
for (i = 0; i < G.vexnum; i++)
visited[i] = 0;
printf("BFS: ");
for (i = 0; i < G.vexnum; i++)
{
if (!visited[i])
{
visited[i] = 1;
printf("%c ", G.vexs[i].data);
queue[rear++] = i; // 入队列
}
while (head != rear)
{
j = queue[head++]; // 出队列
node = G.vexs[j].first_edge;
while (node != NULL)
{
k = node->ivex;
if (!visited[k])
{
visited[k] = 1;
printf("%c ", G.vexs[k].data);
queue[rear++] = k;
}
node = node->next_edge;
}
}
}
printf("\n");
}
/*
* 打印邻接表图
*/
void print_lgraph(LGraph G)
{
int i,j;
ENode *node;
printf("List Graph:\n");
for (i = 0; i < G.vexnum; i++)
{
printf("%d(%c): ", i, G.vexs[i].data);
node = G.vexs[i].first_edge;
while (node != NULL)
{
printf("%d(%c) ", node->ivex, G.vexs[node->ivex].data);
node = node->next_edge;
}
printf("\n");
}
}
/*
* 获取G中边<start, end>的权值;若start和end不是连通的,则返回无穷大。
*/
int get_weight(LGraph G, int start, int end)
{
ENode *node;
if (start==end)
return 0;
node = G.vexs[start].first_edge;
while (node!=NULL)
{
if (end==node->ivex)
return node->weight;
node = node->next_edge;
}
return INF;
}
/*
* prim最小生成树
*
* 参数说明:
* G -- 邻接表图
* start -- 从图中的第start个元素开始,生成最小树
*/
void prim(LGraph G, int start)
{
int min,i,j,k,m,n,tmp,sum;
int index=0; // prim最小树的索引,即prims数组的索引
char prims[MAX]; // prim最小树的结果数组
int weights[MAX]; // 顶点间边的权值
// prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
prims[index++] = G.vexs[start].data;
// 初始化"顶点的权值数组",
// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < G.vexnum; i++ )
weights[i] = get_weight(G, start, i);
for (i = 0; i < G.vexnum; i++)
{
// 由于从start开始的,因此不需要再对第start个顶点进行处理。
if(start == i)
continue;
j = 0;
k = 0;
min = INF;
// 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
while (j < G.vexnum)
{
// 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
if (weights[j] != 0 && weights[j] < min)
{
min = weights[j];
k = j;
}
j++;
}
// 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
// 将第k个顶点加入到最小生成树的结果数组中
prims[index++] = G.vexs[k].data;
// 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
weights[k] = 0;
// 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
for (j = 0 ; j < G.vexnum; j++)
{
// 获取第k个顶点到第j个顶点的权值
tmp = get_weight(G, k, j);
// 当第j个节点没有被处理,并且需要更新时才被更新。
if (weights[j] != 0 && tmp < weights[j])
weights[j] = tmp;
}
}
// 计算最小生成树的权值
sum = 0;
for (i = 1; i < index; i++)
{
min = INF;
// 获取prims[i]在G中的位置
n = get_position(G, prims[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (j = 0; j < i; j++)
{
m = get_position(G, prims[j]);
tmp = get_weight(G, m, n);
if (tmp < min)
min = tmp;
}
sum += min;
}
// 打印最小生成树
printf("PRIM(%c)=%d: ", G.vexs[start].data, sum);
for (i = 0; i < index; i++)
printf("%c ", prims[i]);
printf("\n");
}
/*
* 获取图中的边
*/
EData* get_edges(LGraph G)
{
int i,j;
int index=0;
ENode *node;
EData *edges;
edges = (EData*)malloc(G.edgnum*sizeof(EData));
for (i=0; i<G.vexnum; i++)
{
node = G.vexs[i].first_edge;
while (node != NULL)
{
if (node->ivex > i)
{
edges[index].start = G.vexs[i].data; // 起点
edges[index].end = G.vexs[node->ivex].data; // 终点
edges[index].weight = node->weight; // 权
index++;
}
node = node->next_edge;
}
}
return edges;
}
/*
* 对边按照权值大小进行排序(由小到大)
*/
void sorted_edges(EData* edges, int elen)
{
int i,j;
for (i=0; i<elen; i++)
{
for (j=i+1; j<elen; j++)
{
if (edges[i].weight > edges[j].weight)
{
// 交换"第i条边"和"第j条边"
EData tmp = edges[i];
edges[i] = edges[j];
edges[j] = tmp;
}
}
}
}
/*
* 获取i的终点
*/
int get_end(int vends[], int i)
{
while (vends[i] != 0)
i = vends[i];
return i;
}
/*
* 克鲁斯卡尔(Kruskal)最小生成树
*/
void kruskal(LGraph G)
{
int i,m,n,p1,p2;
int length;
int index = 0; // rets数组的索引
int vends[MAX]={0}; // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
EData rets[MAX]; // 结果数组,保存kruskal最小生成树的边
EData *edges; // 图对应的所有边
// 获取"图中所有的边"
edges = get_edges(G);
// 将边按照"权"的大小进行排序(从小到大)
sorted_edges(edges, G.edgnum);
for (i=0; i<G.edgnum; i++)
{
p1 = get_position(G, edges[i].start); // 获取第i条边的"起点"的序号
p2 = get_position(G, edges[i].end); // 获取第i条边的"终点"的序号
m = get_end(vends, p1); // 获取p1在"已有的最小生成树"中的终点
n = get_end(vends, p2); // 获取p2在"已有的最小生成树"中的终点
// 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
if (m != n)
{
vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n
rets[index++] = edges[i]; // 保存结果
}
}
free(edges);
// 统计并打印"kruskal最小生成树"的信息
length = 0;
for (i = 0; i < index; i++)
length += rets[i].weight;
printf("Kruskal=%d: ", length);
for (i = 0; i < index; i++)
printf("(%c,%c) ", rets[i].start, rets[i].end);
printf("\n");
}
/*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void dijkstra(LGraph G, int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。
// 初始化
for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。
prev[i] = 0; // 顶点i的前驱顶点为0。
dist[i] = get_weight(G, vs, i); // 顶点i的最短路径为"顶点vs"到"顶点i"的权。
}
// 对"顶点vs"自身进行初始化
flag[vs] = 1;
dist[vs] = 0;
// 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = 1; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = 0; j < G.vexnum; j++)
{
if (flag[j]==0 && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = 1;
// 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = 0; j < G.vexnum; j++)
{
tmp = get_weight(G, k, j);
tmp = (tmp==INF ? INF : (min + tmp)); // 防止溢出
if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}
// 打印dijkstra最短路径的结果
printf("dijkstra(%c): \n", G.vexs[vs].data);
for (i = 0; i < G.vexnum; i++)
printf(" shortest(%c, %c)=%d\n", G.vexs[vs].data, G.vexs[i].data, dist[i]);
}
void main()
{
int prev[MAX] = {0};
int dist[MAX] = {0};
LGraph* pG;
// 自定义"图"(自己输入数据)
//pG = create_lgraph();
// 采用已有的"图"
pG = create_example_lgraph();
//print_lgraph(*pG); // 打印图
//DFSTraverse(*pG); // 深度优先遍历
//BFS(*pG); // 广度优先遍历
//prim(*pG, 0); // prim算法生成最小生成树
//kruskal(*pG); // kruskal算法生成最小生成树
// dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离
dijkstra(*pG, 3, prev, dist);
}
暂时
最新推荐文章于 2024-03-29 20:30:46 发布