7D性能咨询项目日记1:客户要什么就要给什么,不是你会什么给什么

从培训需求到咨询需求

在7月底的时候,接到了一个培训需求,目标是能通过培训指导公司内部的性能测试人员进行性能场景执行和性能瓶颈分析。客户有一个系统,已经上线,但不知道系统中有什么性能问题。

从这个描述来看,既然是要解决实际的项目中的问题,那培训的形式可能就解决不了问题。

于是我就说过去现场看一下,先直接把当前的问题投屏出来看看,如果能立即分析解决,那就先解决当前的问题,再说培训或咨询的事情。

从我的经验上来说,有些客户虽然有紧急的问题,但是可能问题也只有一两个,不复杂的话,一会就分析解决完了。后续也不需要做培训或咨询,就当是技术交流。

有些客户是系统问题比较多,需要做一个完整的性能项目咨询,那才推进后续的咨询工作。

我到现场看了一下,现象是压力起来之后,服务端的CPU使用率太低,感觉没有压上去。现场分析解决了三个问题,CPU使用率达到了100%了。 然后这个项目就进入了咨询的阶段。

性能测试的交付物是不是只罗列结果数据

有的性能项目做完了之后,就是给一个这样罗列数据的报告。比如下面这样的数据:

  • 平均响应时间(毫秒)
    在这里插入图片描述

  • TPS
    在这里插入图片描述

  • 服务器CPU使用率
    在这里插入图片描述

这是别人给我看的报告中的一部分(已脱敏),并且别人给我看这个报告的时候,还特意说了,这个报告写的非常好。我看了一下,这个在执行上确实是挺好的。可能有几点是和我的逻辑不同的,这里也描述一下供讨论。

其中场景执行的截图大概是这样的:
在这里插入图片描述
从场景上看就是压力线程直接从一个梯度开始,然后运行30分钟。这显然不符合真实的生产场景,这里应该换成连续递增的加压方式。

因为是断开运行的场景,数据不连贯,所以上表中的数据只能手工填写。我们根据上面的数据做几个图看一下。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
从趋势图上看,响应时间、TPS、资源使用率都在随着压力的增加而增加,所以瓶颈已经是非常明显的了。如果数据是满足业务指标的,这样的数据也可以结束了。

所以这里有个特别重要的结论要说明:满足业务指标。

注意,这里说的是要满足业务指标,而不是技术指标。如果对于无用户概念的交易类系统,给出交易对应的TPS、RT就可以回答,但对于有用户概念的系统,就要回答在线用户、并发用户这样的业务指标。

然后要说明当前性能瓶颈在哪里,后续还要做什么样的优化,以及对生产的配置建议和运维动作建议。而这一点在报告中没有体现。

从我接触到的性能项目的客户来看,大部分客户管理层的人,都更关心的是结论能不能满足业务指标,如果不满足有什么优化建议。

所以,客户想要的是这个系统上线后能不能稳定运行的答案。在做性能实施项目的时候,这个答案一定要给。

性能咨询是做什么呢?就是要告诉客户,当前的容量是否能达到业务要求,如果可以达到,可不可以推算未来可以支持的上限。如果达不到,当前的瓶颈在哪里,优化的具体方式是什么。 把这个过程中要做的事情一一列出来。也就是把一个完整的性能逻辑应用到项目中去。

在这里插入图片描述

上面是性能咨询中的具体技术工作的目标,还有一件事情要做的,就是要客户的性能团队能快速成长,最终实现的是独立完成性能项目。

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
内容概要:本文详细介绍了利用改进粒子群算法(PSO)进行混合储能系统(如电池与超级电容组合)容量优化的方法。文中首先指出了传统PSO易陷入局部最优的问题,并提出通过非线性衰减惯性权重、引入混沌因子和突变操作等方法来改进算法性能。随后,作者展示了具体的Python代码实现,包括粒子更新策略、适应度函数设计以及边界处理等方面的内容。适应度函数不仅考虑了设备的成本,还加入了对设备寿命和功率调节失败率的考量,确保优化结果的实际可行性。实验结果显示,在风光发电系统的应用场景中,改进后的PSO能够在较短时间内找到接近全局最优解的储能配置方案,相比传统方法降低了系统总成本并提高了循环寿命。 适合人群:从事电力系统、新能源技术研究的专业人士,尤其是对储能系统优化感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要对混合储能系统进行容量优化的场合,旨在提高储能系统的经济效益和使用寿命,同时保证供电稳定性。通过学习本文提供的理论知识和代码实例,读者能够掌握改进粒子群算法的应用技巧,从而应用于实际工程项目中。 其他说明:文中提到的所有代码均为Python实现,且已在GitHub上提供完整的源代码链接(尽管文中给出的是虚拟地址)。此外,作者还计划将改进的PSO与其他优化算法相结合,进一步提升求解复杂问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zuozewei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值