#resnet feature extraction
import os
os.chdir('/root/caffe-master/examples')
import numpy as np
import matplotlib.pyplot as plt
import itertools
import csv
plt.rcParams['figure.figsize']=(10,10)
plt.rcParams['image.interpolation']='nearest'
plt.rcParams['image.cmap']='gray'
import sys
caffe_root='../' #this file should be run from {caffe_root}/examples(otherwise change this line)
import caffe
caffe.set_mode_gpu()
model_def='../atongtest/ResNet-50-deploy.prototxt'
model_weights='../atongtest/ResNet-50-train2_iter_350000.caffemodel'
net=caffe.Net(model_def,model_weights,caffe.TEST)
MEAN_PROTO_PATH=caffe_root+'atongtest/ResNet_mean.binaryproto'
blob=caffe.proto.caffe_pb2.BlobProto()
data=open(MEAN_PROTO_PATH,'rb').read()
blob.ParseFromString(data)
array=np.array(caffe.io.blobproto_to_array(blob))
mu&
python调用resnet模型 对人脸图片进行特征提取,提取全连接层特征向量
最新推荐文章于 2024-09-15 13:36:18 发布
该博客介绍了如何利用Python和Caffe框架调用ResNet-50模型来提取人脸图片的特征。通过加载模型定义和权重,计算图像的平均值,然后遍历指定目录下的所有.jpg图片,提取每张图片的'pool5'层特征向量。计算这些特征向量之间的余弦相似度,并将结果保存到CSV文件中。
摘要由CSDN通过智能技术生成