python调用resnet模型 对人脸图片进行特征提取,提取全连接层特征向量

该博客介绍了如何利用Python和Caffe框架调用ResNet-50模型来提取人脸图片的特征。通过加载模型定义和权重,计算图像的平均值,然后遍历指定目录下的所有.jpg图片,提取每张图片的'pool5'层特征向量。计算这些特征向量之间的余弦相似度,并将结果保存到CSV文件中。
摘要由CSDN通过智能技术生成
#resnet feature extraction
import os
os.chdir('/root/caffe-master/examples')

import numpy as np
import matplotlib.pyplot as plt
import itertools
import csv

plt.rcParams['figure.figsize']=(10,10)
plt.rcParams['image.interpolation']='nearest'
plt.rcParams['image.cmap']='gray'

import sys

caffe_root='../'           #this file should be run from {caffe_root}/examples(otherwise change this line)

import caffe

caffe.set_mode_gpu()

model_def='../atongtest/ResNet-50-deploy.prototxt'
model_weights='../atongtest/ResNet-50-train2_iter_350000.caffemodel'

net=caffe.Net(model_def,model_weights,caffe.TEST)

MEAN_PROTO_PATH=caffe_root+'atongtest/ResNet_mean.binaryproto'

blob=caffe.proto.caffe_pb2.BlobProto()
data=open(MEAN_PROTO_PATH,'rb').read()
blob.ParseFromString(data)
array=np.array(caffe.io.blobproto_to_array(blob))

mu&
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值