codeforces 716C. Plus and Square Root (思路+大数)

传送门:codeforces 716C



题目大意:

游戏开始时你在第 1 级,有个数字为 2。当你在第 k 级时,你可以进行以下两种操作:数字+k,或者当数字可开平方时将其开平方。


当数字 +k 时,要求 +k 后的数字是当前级 k 的倍数,当数字开平方时,要求开平方后的数字是下一级 (k+1)的倍数,并且到达下一级。


问从第 1 级到第 n+1 级,每次进行的 +k 的次数为多少次。答案不要求是最优的。



思路:

由于不要求答案是最优解,所以我们只需要找到一个可行解即可。先来解决 +k 后的数要求是 k 的倍数的问题,既然到达第 k 级的数是上一层的数开平方得来的,并且是 k 的倍数,所以 +k 后也是 k 的倍数。


然后我们来求第 k 层的数进行几次 +k 后的结果是 (k+1)^2 的倍数呢?注意,我们不需要求最优解。答案是 lcm(k,k+1) 的平方,因为他既是 k 的倍数,又是 (k+1)^2 的倍数。lcm表示两数的最小公倍数。


然后求进行了多少次 +k 操作,答案为 ( lcm(k,k+1)^2 - 第 k 层第一个数 ) / (k).



注意:

1.因为 k 和 k+1 一定互素,所以他们的最小公倍数为 k*(k+1)。

2.得到的步数会超 long long,所以可以选择用 java 或者 python 解决大数问题。



代码:

//C语言版,会超时 
#include<stdio.h>
typedef long long LL;

int main()
{
    LL i,n,cc,tmp,ans;
    while(~scanf("%lld",&n))
    {
    	cc=2; //数字初始化为2 
	    for(i=2;i<=n+1;i++)
		{ //从第二级开始 
	        tmp=i*(i-1);
	        tmp=tmp*tmp; //lcm(i,i-1)^2 
	        ans=(tmp-cc)/(i-1); //计算 +k的次数		 
	        printf("%lld\n",ans);
	        cc=i*(i-1); //下一行的数 
	    }
	}
	return 0; 
}


n=input()
cc=2
for i in range(2,n+2):
    tmp=i*(i-1)
    tmp=tmp*tmp
    ans=(tmp-cc)/(i-1)
    print ans
    cc=i*(i-1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值