详解数据可视化的4种类型:手把手教你正确选择图表

本文介绍了数据可视化的四种类型:观点说明、观点生成、可视化发掘和日常数据可视化,强调了每种类型的应用场景和设计要点。观点说明类图表用于清晰表达复杂概念,而观点生成类图表则在探索和创新过程中发挥关键作用。可视化发掘涵盖了证实性和探索性可视化,前者用于验证假设,后者用于发现新洞察。日常数据可视化则注重简洁和直接传达信息。通过案例分析,文章展示了如何设计有效的可视化图表。
摘要由CSDN通过智能技术生成

导读:了解可视化任务落在哪个象限有助于我们对要使用的可视化形式、需要的时间以及需要的技能做出准确的判断。

作者:斯科特·贝里纳托(Scott Berinato)

来源:大数据DT(ID:hzdashuju)

将性质和目的这两个问题的答案整合在一个经典的2×2矩阵中,就得到了四种可视化类型。

让我们从这个2×2矩阵的左上角开始,按逆时针方向进行说明。

7ecc3780c6183ea6a3a1422e0b635c39.png

01 观点说明类

也可以称之为“咨询顾问象限”,因为咨询顾问们对此类图表的迷恋常常造成流程图和周期图的过度使用,有时于表达无益,反而有害。(《哈佛商业评论》(Harvard Business Review)的一位编辑嘉丁娜·莫尔斯(Gardiner Morse)为这类过于烦琐的图表创造了一个术语:“废话圈”(crap circles)。)

概念型、陈述性图表利用人们对隐喻(树状图,桥形图)和简单惯例(圈子,层级)的理解,可以极大地简化复杂的概念。组织图、决策树和周期图都是观点说明类图表的经典示例。作为本文内容框架的2×2矩阵图也属于此类。

f26648524dec56bd18a20fee7ac110a6.png

观点说明类图表的设计应清晰而简单,但大部分此类图表往往缺乏这样的特点。它们不受限于数轴也无须考虑如何将数据绘制精确,但对隐喻的依赖常常导致为了强化象征义而加入许多不必要的装饰。例如,你要介绍的概念是“漏斗式客户”,你可能会不假思索地在图表中放一个真正的漏斗图片,但这种平实的手法可能导致失败的图表设计。

因为数据本身不具备观点说明的功能,图表说明观点的能力必须由我们赋予:关注图表的结构和观点的逻辑,关注图表是否足够清晰——这些之于图表的重要性,类似文本编辑之于稿件——将作者的创意以最清晰、最简明的形式表达出来。

比如,一家公司聘请了两位咨询顾问,帮助研发团队从其他行业中寻找灵感,两位顾问打算使用一种叫作金字塔搜索的方法。但是金字塔搜索是如何进行的呢?顾问们要先给研发部门的负责人讲清楚。于是,他们拿出了这样一幅图:

cd73e463687d427579b2c0ec82067a20.png

这个观点说明图表的问题在于设计过度:渐变色、带阴影的箭头以及分层的3D金字塔将我们的注意力从图表观点吸引到了图表的装饰元素——这种风格不可取。

此外,他们并没有将隐喻描述清楚。他们要讲的是金字塔搜索,但图中最突出的却是相扣的环;金字塔只是图像,起不到什么作用。这种做法令人困惑。他们也没有利用高度差来表明相对地位,而是将专家和顶级专家置于同一水平线上(放在图的底部——金字塔的象征义又一次没体现出来)。

他们最好呈现这样的图:

746eea04efa8bc53c426d36f2ca89bab.png

▲资料来源:MARION POETZ AND REINHARD PRüGL-JOURNAL OF PRODUCT INNOVATION MANAGEMENT

上图中,金字塔的象征意义与视觉效果吻合。更重要的是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值